
MSB-107 

TO: Distribution 

FROM: J.M. Broughton 

DATE: 9 July 1973 

SUBJECT: Proposal for a Symbolic Debugger 

The purpose of this debugger is to allow the user to deal with 
the constructs and environment of his program in symbolic terms 
and with the minimum of fuss. It is also designed to provide 
him with great flexibility in specifying what he wants done 
via a unique command syntax. 

The debugger has the ability to print and alter the value of 
variables. It allows the user to set breaks and "insert" 
debugger commands, effectively programming what is to happen 
at the break. A facility for examining and manipulating the 
stack is also provided, as is the ability to effect {possibly 
non-local) transfers of control. Finally, it is possible to 
call procedures, and to a somewhat limited extent, invoke 
functions. 

I. Basic Concepts 

The debugger is orienter toward individual source pr,ogram 
statements; as a result, one does not set a break at a particular 
location (i.e., machine instruction), but rather, before or 
after some specified statement. Along these lines, the debugger 
also provides a simple set of commands for listing the source 
program. 

This debugger maintains three "pointers" which most commands 
reference in some fashion: 

source pointer 
symbolic pointer 
control pointer 

The source pointer gives the number of the source statement 
currently being dealt with. The symbol pointer indicates the 
current block and generation of storage from which to evaluate 
reference to variables. The control pointer marks the point 
at which execution was last suspended, that is, the debugger 
was entered. All three may be altered separately. 



II. How the Debugger is Invoked 

MSB-107 
Page 2 

The debugger may be called from command level by issuing the 
command: 

debug (path) 

where (path) is an optional argument giving the pathname of 
the segment to be examined. If it is present, it will be "used" 
as the current procedure (see the "use" command}; otherwise, 
the debugger will look for a faulting frame, and if present, 
the owner will be used; failing that, the immediately preceding 
frame will be used. 

If a break is encountered while the a program is executing, the 
debugger will effectively be called. The source pointer will 
be set to the source of the statement at which the break was 
set; the symbol pointer will be set to the current frame and 
block; and the control pointer will be set to the next statement 
to be executed. 

III. The Command Syntax 

(command list):: =(command>[{; J < nl)} (command>] ••• 

<command):: =<simple command) r <conditional command> 

(conditional command) : : = <predicate,' t< simple command 
(command list)~ 

(predicate) : : = {if \while} (<conditional>)~. 

<conditional) : : =<bit value) I• <bit value)\(value> 
\_=i, =I<=\> =j 1 Ll,>}<value) 

Essentially, one can give any number of commands on a line, if they 
are separated by semi-colons. The execution of a command or list 
of commands can be controlled by placing a predicate in front 
of it. For the case of "if (--} ", the command(s} will be executed 
over and over again so long as the value is true. Since a full 
command list with this conditional fea"t11re can be "inserted", it 
is possible to control what happens at a break: for example, stop 
only if some condition is met. 



,-

MSB-107 

Page 3 

IV. Commands 

<brief command):: = brief [on \off_] 

Controls the "verbosity" of the debugger. 

(exec command/:: =exec "<string> 111 

Pass the <string> to the command processor. 

<stack command):: = stack [ i ( ,QJ J all 

Trace the stack backward from the current or ith frame for n 
frames. If there are no limits given, the entire stack will be 
traced. Normally, the stack will be "cleaned up" by ignoring 
system routines; specifying "all" will cause them to be included 
in the trace. 

(status commana) status [<break sp.ecification>] 
<break specification):: = * \(procedure >I< statement> 

List information about breaks: for "*", give all segments 
containing breaks; for {procedure) or (statement), give infor­
mation about the breaks in that segment or at that line. The 
default is to list the break at the current statement. 

(block/ : : = '"procedure/.\." statement> \ level i 
..(use command) : : = use <block) 

This may be used to set the symbol pointer. It will be set to 
the block specified by level i (from "stack"), an invocation of 
<procedure), or the block containing <statement/. If the block 
given is not in the current source segment, the source pointer 
will be moved to that segment (at the point where execution was 
suspended). If the debugger has just been entered, the control 
pointer will be set to the point in the given procedure where 
execution was suspended. 



<where command):: = where 

Prints status of all three pointers. 

< list command):: = list r i 1 

MSB-107 
Page 4 

Print one or i lines beginning with the current statement. 

(position command)::= position <statement>(<offset> 

(offset):: = [ + J-J !! 
Make source pointer point at the line given by< statement) or 
by <offset> relative to the current statement. 

(find command):: = find "<string>" 

All executable statements, starting at the current statement 
and wrapping around, will be searched for an occurrence of 
" <string>". If found, the source pointer will be set to that 
statement. 

<insert command):: = insert[<::: statement> J (<command list)) 

Insert before the (current) statement the (command list)given, 
that is, set a break there. 

(append command):: = append l< statement)] ((command list)) 

Same as above, except insert commands after the (current) statement. 

<:reset command>:: = reset [<break specification'> J 
Reset the breaks associated with the statement or procedures 
indicated (as with "status~'). 



(stop command):: =stop 

MSB...J.07 

Page 5 

This is essentially a call to the debugger. Input will be 
taken from the console as opposed to a break or a ("switched") 
file. If input is already from the console, another invocation 
of the debugger will still be created. 

<pause command): : = pause 

This has the effect of making any break it appears at temporary. 
It is equivalent to "stop~ reset". 

<let command):: = let <element) = <value) 

Assign value to the variable given by <element). 

<goto command):: = goto (statement> 

Transfer to <statement). 

(call command):: = call <procedure) [5 argument list> J 
Call the specified procedure. 

<print command):: = print [<expression> I< element>} 

Print the items specified according to their data types. If the 
builtin functions addr or octal are used, the address or internal 
representation (in octal) will be given. 

(step command):: = step 

Execute one statement and stop. 



<integer command/ : : = [global] integer (symbol> 

MSB.107 

Page 6 

This command defines a variable to be known only to the debugger. 
The variable will only be known in the current procedure (the one 
containing the current block) unless the global attribute appears. 
In that case, the variable will be known everywhere. Both definitions 
will last from process to process. Per-procedure names will be 
found before global names. 

<_ macro command) : : = [global] macro <symbol) (<. command list >) 

This command allows the user to define his own command macros 
for use in the debugger. The global and procedure distinctions are 
as above. The name may not be the same as a variable. 

Note: In order to find an identifier the following procedure is 
followed: search the table of debugger variables for this pro­
cedure, then global variables, then search the procedure's symbol 
table and then (unless procedure is allowed) give up. If genera­
tion information appears, the search will begin with the procedures 
symbol table. 

<do command ) : : = do (symbol) 

This will cause input to be changed to the source of the. macro. The 
lines in the macro will be processed and executed as normal input. 

<erase command) : : = [global] erase (symbol> 

This will erase the definition of the variable or macro given by 
(symbol). 

(.continue command) : : = continue 

This will cause control to "cont:..nue" from where it left off -­
that is, the debugger was entered. 

(end command ) : : = end 

This will cause the execution of a macro to be terminated, and the 
previous command stream to be re-entered. 



."~ v. Expressions, Values, and References 

<expression):: = <.value)\ Z: function) 

<function):: = (procedure'>[< argument list > J 

MSB-107 

Page 7 

<value):: =: <builtin> [(reference)\< constant> 

<builtin):: = addr (<reference)) j octal (<reference>) 

<reference):: = [<simple) )(subscripted) J< structure"')\< locator>} 

Egeneration>J j <symbol/ 

(simple):: =<identifier> 

<subscripted):: = <identifier) (\subscript>[< subscript> J ... ) 
(subscript):: = (reference) j (constant) 

<structure):: = (member )~<member ':EJ ... 

(member):: = (simple)/< subscripted) 

(locator) : : =<reference) ->{<simple)\ <subscripted)\ (structure)} 

.(generation):: = ~block>/ i J 
(element):: = (reference) I< iterated reference) 

(iterated reference):: = a normal <reference) except a 

(subscript) may be: 

(iterated subscript):: =(subscript): <subscript/ 

<argument list)::= <<value)[.<.value)J ... ) 



MSB- 107 

Page 8 

<constant):: = (arithmetic> l (string)/< bit> l< pointer> 

(arithmetic/: : = [ + j-J [< complex> ( ( real> ]( imaginary> J 
<complex>=: =(real) [ +1-}< imaginary ) 

(imaginary):: = (real)i 

<real/:: =<binary)> j(octal >I< decimal> 

(binary):: = { 011 J ... b 

( oc ta 1 > : : = f o J 1 I 213 I 4 J s I 6 / 71 ... o 

(decimal): : = <fixed) / (float > 

(fixed):: =<integer>[< integer). J 
<float):: = (fixed)( exponent) 

<'exponent) : : = e [+ J-J (. integer > 
(integer):: ={o\1!213\415\6\7 ~\9} 

(string):: = 11 [<:: character~ ••• 11 

<bit> : : = II [o \ 1 J • • • "b 

<pointer):: = ..2.\w [Cb)J 

<procedure):: =any PL/I entry variable or constant. (Note: 
if the symbol cannot be found, it will be assumed to be 
an external entry and the user's search rules will be 
followed to find it.) 

(statement):: = -{_ < labe 1/ \ ( .i-] i \ $ <special)} [, s J 
(special)::= b\c 

Where label is an identifier specifying a label constant or 
variable, [f-J i represents the first statement on line i in file _f, 
$b gives the statement where a break last occurred, and $c gives 
the current statement. 11 s 11 gives a statement offset from that 
given by the above. 



,,-

VI. Implementation Considerations 

REQUIREMENTS OF EACH STATEMENT 

MSBJ.07 
Page 9 

Symbol Table Statement Map Special Compile 

brief 
exec 
stack x 
status (x) 
switch 
use (x) x 
where x 
list (x) x 
position (x) x 
find x 
insert (x) x 
append (x) x 
reset (x) 
stop 
pause 
step x 
let x 
goto (x) 
call x 
print x 
return 

(x) Indicates need for symbol table only to 
evaluate labels. 

* 

* In order to implement it in the easiest manner. 

Mode 




