
-
Multics Technical Bulletin MTB-105 

Toa Distribution 

From• Steve Webber 

Subject• New Page Control Desion Proposals 

Date: July 8, 1974 

Introduction 

This MTS discusses some of the prooosed changes to.the 
page control organization of Multics. 1he changes are extensive 
and constitute a considerable deviation from the current 
structure and algorithms. The justification for the changes 
comes from several sources but primarily our own metering and 
analysis of the current system with its current load 
characteristics. Some of the basic problems the new scheme ho~es 
to solve are: 

1) uniformity of through~ut so that system efficiency 
does not degrade as load increases 

2) more equitable core accountinq - the current memory 
units scheme just doesn't work well. 

3) potentially more efficient algorithms which 
partially distribute the global oaginq lock and 
therefore make multiple CPU configurations more 
efficient. 

The new design for page control differs from the current design 
primarily in the core management algorithms. The 11core control" 
functions are to be s~lit apart from the oage fault handlina 
functions thereby giving us more freedom in the choice of core 
removal algorithms as well as allowing us to partition the code 
into separate 11tasks· 11 • 

8as1c AssumptiJlns 

One of the main reasons, today, for our excessive 
overhead caused by the paqinq mechanism is that user orocesses 
have strikinqly large worldnq sets. This is made even worse by 
the fact that most processes change the contents of their workin0 
set quite rapidly. A result of these characteristics is that a 
great many oages are brouqht into core, referencP-d for a s.hod 
period of time and then not referenced for a lonq time - lono 
enough to have the nage or paqes removed from core. Whether this 
behavior is inherent in a system like Multics, or in a user 

Multics Project internal workinq documentation. Not to be 
reproduced or distributed outside the Multics Project. 



Page 2 MTB-105 

community such as MIT or Phoenix, or whether 1 t wi 11 continue to. 
behave in this manner are interestina questions. We, however, 
must look at the more immediate oroblem of trying to find a 
fJfl<J in0 system that works we 11 in this environment as we 11 as 
tryinq to understand the reasons for the behavior. <Indeed, 
another task being undertaken is just this study of the causes of 
this behavior with the intent of oossibly changing the basic. 
designs and constructs.) It is much easier to provide page 
removal Algorithms for slowly changing working sets <swapping is 
~11 extreme>. Ihe new oaging system we hope to develop should 
work well with either kind of system behavior. 

With the raoidly changing working sets and pages referenced for 
only a short period of time comes the interesting result that a 
qreat deal of main memory is apparently not being used. This has 
been observed and verified by several different schemes of 
sampling and metering the MIT system. In fact, usually there are 
about 30-50 percent of the pages in use which have not been 
referenced in the last "lap" - where a lap takes from one-half to 
one second. It is these paaes which are candidates for removal. 
It should be noted that there are .ma.r:u! pages which are good 
candidates for removal. It is a buyer's marker for core blocks 
C today! ) • 

Another observation to be made is that since there are a great 
many pages ·which are referenced for only a short time after they 
are brought into core it mioht be worthwhile to sample all pages 
a given oeriod of time after they were brought in to see if they 
are st i 11 be! ng used. 'fhis very experiment was modeled (with a 
page control/scheduler modeling orogram) and, indeed, better 
paqinq behavior - i.e. fewer page faults - resulted when this was 
done. 

If one analyzes the workings of the current algorithm-it is noted 
that the' '1lap time 11 is used as the sampling period and that the 
lap time chanqes with the amount of core configured and th~ 
removal alqorithm used. However, program behavior and reference 
patterns in oarticular are independent of configuration Cfor the 
most part) and it is therefore unlikely that this algorithm which 
tries to control one entity with another fairly independent one 
is optimal. · 

The experiment oerformed to verify the above showed that rather 
than 500 to 1000 millisecond between sampling, 50 millisecond was 
better. 'fhis says that many cages are referenced for.up to 50 
mi 11 iseconds and then not referenced again. 'fhe new proposal 
uses this finding and sets a sampling rate which is independent 
of the confiquration and possibly even load. 

One last assumotion should be noted. This is that for several 
reasons it will be beneficial to develop a scheme which adaots 
well to a disk only system. 



MTB- 105 tJaqe 3 

Goals 

~'IJith the above assumptions and with our stated broad goals we are 
now in a position to propose the qeneral new orqanization. 
First, however, more detailed goals will be listed so that it 
will become clearer why some des10n decisions have been made. 

I) we would like to split up the page control lock 
mechanism so that independent functions of page 
control can go on simultaneously, 

2> we would like to be able to get some useful work 
done by the ~idle·~ processes, if possible, 

3) we would like to uodate, in some way, our disk 
management routines to take better advantage of the 
hardware. Ihis includes using rotation positional 
sensing, seek minimization, and the like, 

4) 

5) 

we would like to be 
system so that it 
changes in load 
degraded, 

able to continually monitor the 
~an automatically adjust to 

to ensure throughput is not 

we \~ould like to set' up communication 
scheduler and page control so that 
with a broad.er base of knowledge. 

between the 
each can work 

Core CotiWl and Page Stea11o.g .. 

A major change in the new algorithms .. is the manner in which .core 
control interfaces with oage control. Currently, the. two are 
tightly bound together both in design and in data structures. 
The new scheme will separate the two nearly comoletely. Page 
control will contain code to handle page faults .and provide 
paging interfaces for segment control. Core control will manage 
the core map, decide which pages should be removed from core, 
etc. The actions of page control will be under control of a 
global lock, the oage table lock. The actions of core control 
will be under control of a different lock, the core Map lock. 
The names of the locks intentionally include the names of the 
data structures they are intended to control. 

The core algorithm currently is invoked wherever a block of core 
is needed, either for a faulted page or for a read/write sequence 
CRi'lS) used to move a page from the oaging device. The new scheme 
would replace this mechanism with one that continually attemots 
to. keep a pool of free core blocks for use when n~eded. The 
obvious disadvantage here is that core, a valuable resource, is 
apparently being wasted while it sits idle in the tree list. 
However, there are two reasons why t111s ls not as bad as 1 t rr.iqht 
seem. r1rst, as noted earlier, un4er current rererence nehe.vior 
there is a lot ot core around not oeinq used which might as well 



Page 4 MTl3- 105 

be threaded into a tree list. ~econd, the new alaorlthm gives us 
more freedom and tlexibility for trying other changes and 
extensions. 

One of the more important chRnqes we would like to try is in the 
actual management of tl1e core mao. ~ince we are assuming the 
core management functions are not part of the page fault handling 
code, the actual work done can be performed completely 
asynchronously - in another process. This is in fact what is 
....,,...J.l"i~ fJAVtJV.:;...,..::., .,;_.;;;.. i.;.11c:i .. i.;.11u ..:;v.1. c 1·cf.'J.CllJ.Sllt!lt:fll. 1.d::>if.. i.H::: 
whoever not ices the need and whenever · 1 t ls noticed. 
special case, this includes tl1e idle processes, which, on 
only system may run a considerable percentage of tne time. 

1 Uil uy 
As a 

a disk 

The actual algorithm of the core replenishment tasK Will be a 
term ot page 5~.J.iog. Page stea11nq 1n this context is nothing 
more than 11 continually11 searchinq core tor blocks which can be 
freed. The orime feature is that the rate of stealing can be 
controlled and the actual implementation will consider the 
11owner 11 of the page and weiqh the value of removing the page with 
resoect to the paging behavior the owner is exhibiting. 

~Ince the rate of stealing Cnumber of core blocks freed per unit 
time) is not necessarily the same rate at which page faults eat 
up core, any imbalance between the two mechanisms wi.11 tend to 
increase or decrease the amount of free core at any instant in 
time. This quantity, the amount of free core, will be used as 
the prime factor for controlling eligibility. C!n the cast, this 
decision has been made based on tne working set estimates of 
processes calculated when the processes last ran.> Hy 
controllino eligibility by the dynamic core requirements of the 
processes running the instant eligibility is to be awarded• we 
have a much better chance of success in preventing thrashing. 
Th~ new eligibility decisions will still take working sets into 
account but they will use curnrnt core demands as a better base 
from which to make the decision. 

The page stealing alqorithm will be run by the system at three 
distinct logical points during normal operation. These are IJ 
at oaqe fault time, if necess3ry, 2) when the idle process runs 
and 3) (most likely> when the process dispatcher runs. The 
actual oroqram(s) will steal as many pages as seem anpropriate as 
described in the sketch of the qeneral algorithm later on. 

El:Q~ss page t.ools 

It has been noted many times that a feature that protected one 
process against the oaginq behavior <usually thrashing> of 
another process would be desirable. This is true esoecially if 
we want to be able to support very cheap, limited subsystems such 
as BASIC or text editinq. In Jrder to do this some mechanism for 
determining which process ••owns ir a page must be established. 
Various techniques have been proposed and some attempted. The 



MTB-1.05 Paqe 5 

one proposed here is slightly expensive, although the exrense can 
be administratively controlled. Basically each block of core 
will be tagged with the process that owns the page residing in 
the core. For non-shared segments (per-process seqments or 
segments that only one process has referenced> it is safe to set 
up the owner of a page as the process that faults on the page and 
brings it into core. About 30% to 50% of all page faults are on 
such pages. For (potentially> shareable pages, this mechanism 
doesn't work. The process that faults on a page may easily not 
be the heaviest user of the page. ~or such pages the owner is 

. set up initially as the process that faulted ~n the page and then 
if the oage remains in core for a considerable period of time .Ca 
second or two) the owner is changed appropriately. This is done 
by olacing a special fault in the PTW for .the p·age• the handler 
of which does nothinq more than remove the fault, update the 
owner of the page and update the paqe pool sizes of the ·old and 
new owners. The trequen~y with -which the fault is set <the 
handler takes from 50 to 100 microseconds) can be set 
administratively to control overhead at the expense of 
resolution. With 5 second resolution Cwhich is considered more 
than adequate and equitable> the overhead is so small it could 
not be measured (down in the noise>. 

' 

The owner of a page will therefore be a particular orocess on the 
system Cor the page will be 11 free 11 ). Th.is association will be 
made by placing a unique proce~s tag in each core map entry. 
CThe tag will actually be a pointer to the APT entry for the 
process.> This ownership quality can be directly used as a means 
of core <or main memory> accounting. When a page .is brought into 
core a clock reading will be saved in the core map entry 
a.ssoc lated with the page. When the page is thrown out of core 
another clock reading will be made and the core residency value 
will be updated into the APT entry for the process owning the 
page. The reasons that schemes such as this have not been used 
Con Multics> in the past is due to I> the oroblem of pages 
remaining in core after they are not needed (usually in an idle 
system> and 2> the problem of having one process fault on a 

·hfgh'ly used page and therefore havinq to pay for it as long as 
oth~r processes keep the page in core~ Page stealing as 
described below, with the aid of the special fault mentioned 
above, solves both of these problems. 

The fact that each block of core in the syste~ is assigned to a 
process effectively partitions all of core into distinct "pools 
of pages". The size of these page pools can be monitored .and 
controlled by the system. A 9rocess can oe guaranteed a certain 
minimum number of pages in core and restricted to less than some 
maximum. In fact, the controlling of the sizes of these page 
pools will be one of the critical tasks of the scheduler. It is 
this control that will orevent a runaway process from forcing the 
pages of another 11 innocent·11 process from core. It will be this 

,... same control that will allow a large working set process to 
establish a large page pool a~d keep it for a long enouoh period 



Page 6 

of time to warrant the overhead of running the process at all. 
It will be uo to the scheduler to determine page pool limits 
within which a process should be constrained while it runs. It 
will also be up to the scheduler to determine when and how these 
limits are changed. The algorithms to be used here are sketched 
in the following section. 

Ih.Ls..c.b.e.d.ul.ax:LP age Con trc.L.In.tiu:~.e. 

.1.... t,rJ.5 1'Cc4ucil'-.1.1 1.J~t:H1 ..;;ia.Lm~u l.11d1.. 1..ne 1..r-.01 l .L(.; t.;Oni::.ro11er ana 
page c·ontrol should communicate more. This claim is hereby made 
aoain. The orime reason for the claim is that the decision to 
run a process cannot be merely an administrative priority 
decision if the system is to perform efficiently. There is a 

-~.ca~ider~ overhead in gettino. a process going after being 
blocked Cor whatever> in a virtual memory system - especially one 
like Multics with its large working sets. This overhead must be 
considered by the scheduler both in the order in which to run 
processes as well as the length of time a process should be run 
Ci.e. remain eligible and competing actively for core>. In the 

.past the scheduler has for the most oart iqnored this overhead 
and based all of the decisions on how long the process has run 
s·1nce it "interacted". Although this variable should probably be 
integrated into the scheduler decisions it should probably not be ......... 
weighed anuwhere nearly as much .1..t il!J..~~ .1.s. .:tQ. ~ -, 
maiotaiwu::l •. Instead, the following items are claimed to be ·at ..... 
least as important• 

J) the working set Cas estimated by page control), 

2) the recent oaginq rate of the-process Cas measured 
by page control> and 

3) the recent 
measured by 
the r·atio of 
oages that 
to 'the total 
quantum. 

'• 

thrashing rate of the process Cas 
page control). The thrashing rate is 

page faults taken in a quantum on 
were already faulted on in the quantum 
number of page faults taken in the 

All of these are easy to come by given that·we continue our post 
purging activities. Note the introduction here of a measure of 
thrashing as a critical quantity here in the scheduling 
mechanism. - This is because thrashing gives us a measure of 
whether a . process really does not fit within the core limits 
assigned to !t as opposed to a process that won't fit in any core 
no matter how much is assigned. As an example, the backup 
process takes an extremely large numbe.r of page faults as it 
dumps segments. But all of the faults are on different pages 
Chence, no thrashing> and the page fault rate would not be '"""" 
decreased no matter how much core was assigned to the process. 
In fact, the optimal amount of core would be just enough to fit 
the code and working data of backup plus a few buffer pages to 



MTB-105 Page 7 

hold data until it could be written onto tape. The large page 
fault rate of backup could not be helped by more core. On the 
other hand, a large PL/I compilation may take many oage faults on 
the code of the compiler and the temporary tree structure during 
a compilation. Here, thrashing would be especially evident if 
only a small amount of core were allotted to the orocess. 
Therefore, the tl:u:.asbing, it is claimed, is the indicator that 
should be used when determining when to grow and shrink the core 
limits of a process. By constraining backup to a page pool of 
the appropriate size we can aid the core removal algorithm by 
forcing it to remove one of backup's buffer pages which is no 
longer needed rather than a potentially usable oage of another 
process. 

The page pool limits will, of course, also have administratively 
· controlled constraints which may vary from zero to infinity. 

Such constraints can be used to override the page control inputs 
both to force certain processes to have better resnonse 
(supposedly at the expense of system efficiency> as well as to 
meter and tune the system and check out modifications to the 
algorithms. 

A second major interface between the scheduler and page control 
is in the area of process loading and unloadinq. Currently the 
loading of a process Ci.e. paging in the PDS and USfG of the 

· process so that it can run and page anything else it needs 
itself> is triggered by the scheduler when it decides the process 
should be allowed to run. Similarly, the unloading (releasing or 
unwlring of the PDS and DSEG> is done when the scheduler or the 
process itself has decided that the process will not be run again 
for awhile. In the current system the unloading of a process is 
accompanied by the "post purg1ng 11 of the process. This includes 
looking at all of the pages the process faulted on and brought in 
during its last quantum Celigibility period). Certain functions 
are performed depending on what types of pages were faulted on, 
how long they were used, whether they are still in core, etc. 
The functions are specified (dynamically if desired) by a set of 
boolean equations coded into the post purge program. They 
include• 

1) writing out a modified page before it otherwise 
would be written out, 

2) marking the page as not having been used for a lon9 
time by turning off the "used" bit in its PT\!¥ 
and/or rethreading the page's core map entry to the 
•11 least-recently-used" end of the core map, 

3) countinq the page in the working set, 

4) measuring the thrashing of the process by noting 
which pages were faulted on more than once in the 
quantum, and 



Page 8 MTB-i.05 

5) measuring the total page faults for the quantum 
and hence the oaging rate. 

Process Swa;:u2iog 

It is proposed that the post purge function be extended so that 
all per-process pages in core at process unload time be wtitten 
out onto a contiguous region of disk <not bulk store). 
Obviously, these pages would be swapped back into Cdiscontiguous) 
core at process load time, i.e. when the process is again 
awarded eligibility. This is analogous to the "Pre-paging 11 

technique used on the 645 and made feasible by the high transfer 
rate and latency optimization that could be pulled off with the 
DRUM. Both of these features exist in a limited way, with the 
DSU-191 disks. The transfer time for 1024 words of data is 6.7 
milliseconds (the DRUM was 2. 1 milliseconds> and with rotational 
nositional sensinq the latency can be minimized. The seek time 
for the disk can be made minimal by allocatinq all ''swap images" 
in adjacent cylinders on a 11scratch 11 pack. It has been estimated 
that 200 to 300 users could be swapped in and out with 30 seconds 
delay per process. between swaopings if each user had a swap image 
of between 10 and 20 pages Ca reasonable number for the 
per-process pages of a process n.ai doing something like a PL/I 
compilation). This estimate would have to be modified downward 
as a function of the number bf u1arge" processes competing for 
resources. 

A partition of disk will be allocated at bottload time as the 
SWAP part! tion and wi 11 be divided into swap "images" of a given 
maximum size. Each APT entry will be assigned one such image Cat 
boot load time) for the 1 i fe of the boot load. 

The dispatcher would decide when a process is to be swapped in Ca 
short time before it is run, supoosedly>. It would call upon 
page control to get enough free core blocks and initiate the 
appropriate 11scatter" read into the acquired core. The page 
swapping orogram would upon its completion, 11connectu the core 
blocks to the appropriate pages. 

When a process is unloaded the scheduler will again call upon 
page control first to nost purge the process <collect statistics, 
etc.> and then to swap the process out. The swap out mechanism 
will consist of little more than issuing the appropriate 
"scatter" write request, saving any necessary information and 
freeinq up the core when the disk I/O is comnlete. 

The concept of process loadinq will be replaced by the swap in 
function: The concept of nrocess unloading will analogously be 
reolaced by the swar out function. 

Pnqes that were ~ped in may be aaoed out <to the paging device 
suoposedly> during a quantum. However, any pages that are to be 



MTB-105 Page 9 

part of a new swap image that are on the paging device will be 
deleted from the paging device at swao out time. The only Cmost> 
valid copy will exist in the swap image. (Only pages in core at 
swap out time will be assigned to the swap image.) This· freeing 
of paging device records will considerably ease the traffic flow 
to and from the paging device. 

The benefits of this sort of process swapping are fairly clear. 
The disks are used much more efficiently for the class of pages 
which can be swapped. The oage faults that are avoided by the 
swap in presumably cost much more than the swep in code. (Much 
of the cost of handling the fault is verifying that the fault 
still exists, etc.> By swapping stacks, linkage, KST's, etc. to 
the disk the pages need not reside on Bulk Store. It has been 
noted that of the 2000 pages of Bulk Store at MIT about 800 would 
be freed up if swaoning were beinq done. A system without a Bulk 
Store would certainly be more efficient if swapping were being 
done. The swapping mechanism. works especially well for the 
small, tightly coded subsystems that we would like to optimize. 
The problems with swaoning in a process are two fold. First, 
greater pressure is placed on the rore freeing mechanism so that 
the entire swap image may be brought in at once. This is 
supposedly not a problem if page stealing is working. Indeed, 
whether or not to award eligibility and hence swap in a process 
will be based on whether the free core is available. 

~ The second major problem is that a process may take longer to set 
up its initial working set by swaoping it in from disk rather 
than paging it in from Bulk Store. Although it is true that a 
process won't be runninq Cin real time) as soon after it is 
decided to run the process, the system efficiency will be higher 
because less CPU time will have been spent to get the same work 
done. An obvious design is to 11preload•r a process by initiating 
the swao in before the process is to be run. Whether or not 
preloading will be attempted has not been decided Cthe demand for 
core is made earlier which may interact with the runninq 
processes). Usually a swao in would be scheduled a short time 
after a swap out so the core freed could be used. 

A third difficulty that arises with swanping is the hiqh use that 
will be made of the disk used to swap with. A single channel 
will be saturated with 300 users and queuing effects come in to 
play long before this. Clever schemes may need to be developed 
to ease the burden on particular disks or disk channels. It very 
well may be cost effective to purchase another disk subsystem 
just for swaooing. 

Note that the swap image on disk will probably contain different 
pages each time it is written. It is the ability to 11choose 11 the 
disk address we write a paqe to that enables us to use the di~k 
in this manner. Several new data structures, some wired down, 
must be added to the system to enable oaqe control to determine 
which pages were actually written where into the swap image. It 



Page 10 MTB-105 

is the task of page control to determine the location of most up 
to date copy of a page. 1t may be I) in core, 2) on the paginq 
device, 3) on the swaooinq device or 4) on normal disk. 

Page stealing will be done by one and only one program set - ~ore 
control. Core control is called occasionally to replenish core 

.and 9s required to provide free core and accept other core as 
.being free. The basic algorithm to be used will be a 
least-recently-used algorithm modified as noted below. There are 
several narameters to the removal alqorithm which are tunable by 
the system administrators. Some variables of the removal 
algorithm are changed by the algorithm itself in an attampt to 
adapt to changing user load and behavior. 

Before the actual algorithm is described the ·structure .. of the 
core map will be briefly described. 

The core map consists of a header containing global control 
information and list pointers followed by an array of core mao 
entries CCME's> indexed by the absolute address of the core 
associated with the entry (divided by the page sizeJ. The 
entries themselves may be threaded into several lists independent 
of absolute address. 

Associated with each CME are I> a pointer to the PTW for the 
paqe residing in the core block, 2) the device address of the 
_page, 3) the time the entry was last looked at by core control, 
4> a pointer to the APT entry of the "owner" of the page. and 5) 
various control bits and thread pointers. 

There are three threaded lists of CME's managed by core control r 
the free list CFL>, the recently faulted list CRFL), and the 
extended residency list CERL>. The free list is linearly 
threaded and managed with a LIFO strategy. The RFL contain-s all 
'Cl.ff's for blocks of core recently awarded to a process becaus.e of 
a oage fault. The ERL contains all other nonspecial OiE's. 

In addition to the CMf's threaded into the above lists there are 
other CME's which are threaded into no list. These are• 

I ) CME's for perm-wired core Ccore that is not in the 
paginq pool), 

2) CME's tor blocks of core being used for read/write 
sequences, 

3) CME's for blocks of core that contain t.e.mp-wired 
pages, 



Page JI 

4) CME's tor b.locks of core for which read I/O is 
going on, and 

5) CME's for currently unconfigured core. 

The header of the core map wi1l contain the obvious pointers to 
the lists as well as useful counters such as the number of CME's 
in each list or state. The header will also contain meterin0 
data and control variables used by the removal algorithm. 

The actual removal algorithm works as follows: 

I) Check the RFL and move any QAE's that have been in 
the list for over alpha seconds to the tail of the 
fRL turning UFF the page-has-been-used Cl->HU) bit of 
the PTW associated with the block of core. 

2> Check the head of the ERL and move any CME's that 
have been used in the last beta seconds to the tail 
of the ERL turning OFF the PHU bits. 

3) Free any unmodified block of core that has not been 
used in the last beta seconds. 

4) Initiate a write request for a.nY page that has been 
modified at some time but has not been used in. the 
last beta seconds and which has not been written 
out since it was last modified. 

When a page fault occurs, a block of core is taken from the free 
list and placed at the tail of the RFL. The time of the fault is 
stored in the CME at this time. The RFL is a linearly threaded 
list strictly ordered by time of entry in the list. The core 
removal algorithm searches this list whenever it is invoked and 
moves as many entries from the head of the list as is appropriate 
to the tail of the ERL. No entry should remain in the R~L for 
more than alpha seconds <within the resolution of time between 
calls to core control>. 

Similarly, core control looks at the head of the ERL, which is 
also linearly threaded and strictly ordered by time of last 
"move-11 in the 1 i st and takes some appropriate act ion .on a 11 C;\iE 's 
that have not been looked at for beta seconds. The important 
feature is that the rate at which CMf's are samoled is a function 
of alpha and beta and not the number of entries in the core map 
<i.e. the current lap time>. A.s lonq as core control is invoked 
frequently enough this sampling rate will be as constant as aloha 
and beta <which may be varied). 

The core accounting will be done at two places during execution 
of the removal algorithm. ~ irst, when a CME is moved· from the 



i-'age 12 MTB-105 

RFL to the ERL and second whenever a CME is moved from the head 
to the tail (for another cycle) of the ERL. When the page is 
faulted on, the APT entry pointer of the faulting process is 
placed in the CME and used to determine the account to which the 
core residency should be charged. This APT entry pointer 
specifies who is the •1owneru o t the page. The removal algorithm 
will, however, change the owner (by changing the $aVed.APT entry 
pointer> if a page stays in core for an ·11extended 11 period o.f time 
(maybe five seconds> and the page cannot be identified as 
uo.1.U11y.i11y to a single process. In this case, the special fault 
is set causing the owner to be recalculated when and if th.e page 
is ever referenced again. Pages which are not potentially 
shareable pages are J) per process pages and 2> pages of 
segments which only one process is using. 

It is clear now how the two problems of core accounting mentioned 
earlier are solved. First, because a page will be fr.eed soon 
after it is no longer used the "idle system" problem goes away. 
Second, by changing the owner of shareable pages that remain in 
core for an extended period of time after they are faulted on, a 
user wi 11 not have to pay for a page which he brings in but whi<;:h 
other processes use after he is through. 

An important refinement of the removal algorithm comes into- play 
when the page fqult rate is higher than the rate at which core ~ 
control can free pages qn its own. When this occurs, Cthe free 
1 ist is empty> the page fault handler calls upon. core c:ontrol 
(before locking the page table lock> to free up a block ot core. 
This call however. is slightly di fterent 1n two respects from the 
stanaara ca1i. upon core com:roi 'to ao wnai:: it: can. r.1rst, core 
control mlJS..t t!nd a tree core block even lt lt means 100K1ng at 
Uil::' s wrnch ·nave not been 1n 'tf)e t:HL ror oeta seconds. ::second, 
core control, when invoked at page tault time, knows on whose 
behalf the block ot core 1s to oe claimed. ln part1cu1ar, core 
control can give the process a core block which it already owned 

if the process was at or above its page pool size already - or 
core control could give the process a block which it did nc.t. own 
thereby allowinQ the process to increase his page pool size. 
Note that this additional information can be used in exactly the 
case where it is most needed, i.e. when the system starts to page 
too heavily. 

Tne values tor alpha and beta that are oe1ng considered are about 
50 and ~uo mil.liseconds resoect1ve1y. ·rnese numoers will of 
course, have to be optimized experimentally but tt should be 
noted that they were chosen so that core would be sampled tor use 
at least as frequently as today <at M!T) and hence core control 
should be able to stay ahead ot the paging rate. 

Two final notes should be mentioned. 1-'irst, the initial 
implementation attempted Cit and when) will not use more than one 



MTB- 105 Page 13 

lock. The current global page table lock w111 be used tor core 
control and pag~ control. This means that one of the important 
design goals will not initially be realized,.but it also means 
that a working v·ersion will be available much earlier because of 
the complex and nonobvious assumptions currently made about the 
page control locking strategy. 

A second item of interest is the management of the Bulk Store •. It 
is currently planned that the last function of the core control 
program will be to make sure that there exist tree paging device 
records and that the paging device map has been updated recently. 
This function is quite analogous to that of page stealing and is 
logically a completely separate task. However, due to the initial 
locking. strategy <and the overhead of invoking the the core 
control task at all> it was thought that we might as well 
incorporate into it the paging device management as well. The 
final design would probably have the paging device map controlled 
by still another lock and the manager invoked at times 
independent of paging or core stealing. 


