Hultics Technical Bulletin MTB~-105

Tos Distribution
Froms Steve llebber
Sub jects New Page Control Desian Proposals

Date: July 8, 1974

Introduction

This MTB discusses some of the propnosed changes to.the
page control organization of Multi¢s. ‘the changes are extensive
and constitute a considerable deviation from the current
structure and algorithms. The justification for the changes
comes from several sources but pnrimarily our own metering and
analysis of the current system with its current load
characteristics. Some of the basic problems the new scheme hones
to solve are:

1) uniformity of throughrut so that system efficiency
does not deqgrade as load increases

2) more equitable core accounting — the current memory
units scheme just doesn’t work well.

3) potentially more efficient algorithms which
nartially distribute the aqlobal naging lock and
therefore make multiple CPU configurations mnore
efficient.

The new design for page control differs from the current desian
primarily in the core management algorithms. The Ycore control™
functions are to be snlit apart from the nage fault handlino
functions thereby giving us more freedom in the choice of core
removal algorithms as well as allowing us to partition the code
into separate "tasks'.

Basic Assumptions

One of the main reasons, today, for our eXcessive
overhead caused by the paging mechanism 1s that user nrocesses
have strikingly large working sets. This is made even worse by
the fact that most processes change the contents of their workino
set qguite rapidly. A result of these characteristics is that a
areat many pages are brouaght into core, referenced for a short
neriod of time and then not referenced for a long time - long
enough to have the nage or pages removed from core. flhether this
behavior is inherent in a system Like Multics, or in a user

Multics Project internal workinag documentation. Not to he
reproduced or distributed outside the Multics Project.

Page 2 MTB-105

community such as MIT or rPhoenix, or whether it will continue to.
behave In tnis manner are interestinc nuestions. We, however,
must look at the more 1Immediate oproblem of trving to find a
naging svstem that works well in this environment as well as
trvyinag to wunderstand the reasons for the behavior. (Indeed,
another task being undertaken is just this study of the causes of
this behavior with the intent of possibly changing the basic.
desians and constructs.) It 1s much easier to provide page
removal aloorithms for slowly changing working sets (swapping is
it extreme). the new naging system we hope to develop should
work well with either kind of system behavior.

flith the raoidly changing workina sets and pages referenced for
only a short period of time comes the interesting result that a
areat deal of main memory is apparently not being used. This has
been observed and verified by several different schemes of
sampling and metering the MIT system. In fact, usually there are
about 30-50 percent of the nages 1in use which have not been
referenced in the last "lap" - where a lap takes from one-half to
one second. It is these paages which are candidates for removal.
It should be noted that there are pany pages which are good
candidates for removal. It is a buyer’s marker for <core blocks
(today!).

Another observation to be made is that since there are a great
many nages which are referenced for only a short time after they
are Dbrought into core it might be worthwhile to sample all pages
a given neriod of time after they were brought in to see if they
are still being used. 'Lthis very experiment was modeled (with a
page controi/scheduler modelino bprogram) and, indeed, better
raging behavior - i.e. fewer page faults - resulted when this was
done.

If one analyzes the workinas of the current aloorithm-it is noted
that the "lap time" is used as the sampling period and that the
lap time changes with the amount of core configured and the
removal algorithm used. However, program behavior and reference
patterns In narticular are independent of configuration (for the
most part) and it is therefore unlikely that this algorithm which
tries to control one entity with another fairly independent one
is optimal.

The exneriment performed to verify the above showed that rather
than 500 to 1000 millisecond between sampling, 50 millisecond was
better. This says that many nages are referenced for up to 50
milliseconds and then not referenced again. The new proposal
uses this finding and sets a sampling rate which is independent
of the confiauration and possibly even load.

UOne last assumotion should be noted. 7This is that for several
reasons it will be beneficial to develop a scheme which adants
well to a disk only system.

MTB- 105 Page 3

Goals

#ith the above assumptions and with our stated broad goals we are
now in a oposition to propose ihe general new oraanization.
First, however, more detailed goals will be listed so that it
will become clearer why some desion declsions have been made.

1) we would like to split un the vage control lock
mechanism so that independent functions of page
control can go on simultaneously,

2) we would like to be able to get some wuseful work
done by the *"idle" processes, if possible,

3) we would like to unciate, 1in some way, our disk
management routines to take better advantage of the
hardware. this Includes using rotation positional
sensing, seek minimization, and the like,

4) we would like to be able to continually monitor the
system so that it -~an automatically adjust to
changes in load to ensure throughput 1is not
degraded,

5) we would like to set up communication between the
scheduler and page control so that each can work
with a broader base of knowledge.

Core Control and Page Stealing.

A major change in the new algorithms is the manner in which .core
control interfaces with page control. Currently, the two are
tightly bound together both in design and in data structures.
The new scheme will separate the two nearly comnletely. Page
control will contain code to handle page faults .and provide
raging interfaces for segment control. Core control will manage
the core map, decide which pages should be removed from core,
etc. The actions of page control will be under control of a
alobal lock, the vage table lock. The actions of core control
will be wunder control of a different lock, the core map lock.
lhe names of the locks intentionally include the names of the
data structures they are intended to control.

The core algorithm currently is invoked wherever a block of core
is needed, either for a faulted page or for a read/write sequence
(RAS) used to move a page from the naging device. The new scheme
- would replace this mechanism with one that continually attemnts
‘to keep a pool of free core blocks for use when needed. 1Ihe
obvious disadvantage here is that core, a valuable resource, 1is
apparently being wasted while it sits idle in the free list.
However, there are two reasons why thls 1is not as bad as 1t might
seem. Prirst, as noted earller, unier current refrerence pHehavior
there 1is a Lot of core around not veing used which might as well

Page 4 ' Mls— 105

be threaded into a free list. bSecond, the new algorithm gives us
more treedom and flexibility for trying other changes and
extensions.

Une of the more important chanaqes we would like to try is in the
actual management of the core man. bSince we are assuming the
core management functions are not part of the page fault handling
code, the actual work «done can be performed completely
asynchronously = in another process. This is 1in fact what is
T N VNV VRV M SRV Y el e titmu Uliv CwIT LEpLTHILDIMIEIIL LdDS& WE Uil UY
whoever notices the need and whenever 1t 1s noticed. As a
special case, this includes the idle processes, which, on a disk
only system may run a considerable percentage oi the time.

The actual algorithm of the core replenishment task wlll be a
form of page siealing. Page sitealling In this context 1s nothing
more than ¥continually" searching core for blocks which can be
freed. The onrime feature 1is that the rate of stealing can be
controlled and the actual implementation will consider the
"owner" of the nsage and weigh the value of removing the page with
resnect to the paging behavior the owner is exhibiting.

Since the rate of stealing (number of core blocks freed per unit
time) is not necessarily the same rate at which page faults eat
up core, any imbalance between the two mechanisms will tend to
increase or decrease the amount of free core at any instant 1in
time. This quantity, the amount of free core, will be used as
the prime factor for controlling eligibility. (In the past, this
decision has been made based on the working set estimates of
processes calculated when the processes last ran.) By
controlling eligibility by the dynamic core requirements of the
processes runnina the instant eligibility is to be awarded, we
have a much better chance of success 1in preventing thrashing.
The new eligibility decisions will still take working sets into
account but they will use currant core demands as a better base
from which to make the decision.

The nage stealing algorithm will be run by the system at three
distinct logical points during normal operation. These are 1)
at ovage fault time, if necessary, 2) when the idle process runs
and 3) (most likely) when the process dispatcher runs. The
actual proagram(s) will steal as many pages as seem anpronriate as
described in the sketch of the general algorithm later on.

Erocess Page Pools

It has been noted many times that a feature that protected one
process against the naging behavior (usually thrashing) of
another nrocess would be desirable. This 1is true especially if
we want to be able to support very cheap, limited subsystems such
as BASIC or text editing. In »rder to do this some mechanism for
determining which nrocess ‘owns¥ a page must be established.
Various techniques have been proposed and some attempted. The

MTB-105 rPage 5

one proposed here is slightly expensive, although the exnense can
be administratively controlled. Lasically each block of core
will be tagged with the process that owns the page residing in
the core. For non-shared segments (ner—process seagments or
segments that only one process has referenced) it is safe to set
up the owner of a page as the process that faults on the vage and
brings it into core. About 30% to 50% of all page faults are on
such pages. For (potentially) shareable pages, this mechanism
doesn’t work. The process that faults on a page may easily not
be the heaviest user of the page. For such pages the owner 1is
set up initially as the process that faulted on the page and then
i1f the page remains in core for a considerable period of time (a
second or two) the owner 1s changed appropriately. 71his is done
by placing a special fault In the PTW for the page, the handler
of which does nothing more than remove the fault, update the
owner of the page and update the page pool sizes of the old and
new owners. The frequency with which the fault is set (the
handler takes from 50 to 100 microseconds) can be set
administratively to control overhead at 'the expense of
resolution. With 5 second resolution (which 1is considered more
than adequate and equitable) the overhead is so small it could
not be measured (down in the noise).

The owner of a page will therefore be a particular process on the
system (or the page will be "free"). This association wili be
made by placing a wunique process tag in each core map entry.
(The tag will actually be a nointer to the APT entry for the
process.) This ownership quality can be directly used as a means
of core (or main memory) accounting. When a page is brought into
core a clock reading will be saved in the core map entry
associated with the page. When the page 1s thrown out of core
another clock reading will be made and the core residency value
will be updated into the APT entry for the process owning the
page. The reasons that schemes such as this have not been used
(on Multics) in the past is due to 1) the »nroblem of pages
remaining In core after they are not needed (usually in an idle
system) and 2) the problem of having one process fault on a
highly used page and therefore having to pay for it as long as
other processes keep the page in core. Page stealing as
described below, with the aid of the special fault mentioned
above, solves both of these nroblems.

The fact that each block of core in the system is assigned to a
process effectively partitions all of core into distinct "pools
of pages¥. The size of these page pools can be monitored .and
controlled by the system. A process can pe guaranteed a certain
minimum number of pages in core and restricted to less than some
maximum, In fact, the controlling of the sizes of these paqe
pools will be one of the critical tasks of the scheduler. It |is
this control that will orevent a runaway process from forcing the
pages of another "innocent" process from core. It will be this
same control that will allow a 1large working set process to
establish a large page pool and keenp it for a long enouagh period

Page é xirﬁﬂIH"lO5

of time to warrant the overhead of running the process at all.
It will be wup to the scheduler to determine page nool limits
within which a process should be constrained while it runs. It
will also be up to the scheduler to determine when and how these
limits are changed. The aloorithms to be used here are sketched
in the following section.

The Scheduler/Page Control Interface

ie 4ds iToyUciluey Leel Cldlhied Lhal Lhe Lrdille controller and
page control should communicate more. This claim is hereby made
again. The prime reason for the claim is that the decision to
run a process cannot be merely an administrative priority
decision if the system 1is to perform efficlently. There is a
considerable overhead in getting a process going after bkeing
blocked (or whatever) in a virtual memory system - esnecially one
like Multics with its large working sets. This overhead must be
considered by the scheduler both in the order in which to run
processes as well as the length of time a process should be run
(i.e. remaln eligible and comneting actively for core). In the
past the scheduler has for the most part ignored this overhead
and based all of the decisions on how long the process has run
since it “interacted". Although this variable should probably be
integrated into the scheduler decisions it should probably not be
welghed anuwhere nearly as much if efficiency 1is fo be
maintained. .Instead, the following items are claimed to be - at
least as important:

1) the working set (as estimated by page control),

2) the recent pmaging rate of the process (as measured
by page control) and

3) the recent thrashing rate of the process (as
measured by page control). The thrashing rate is
the ratio of page faults taken in a quantum on
pages that were already faulted on in the gquantum
to the total number of page faults taken in the
quantum. :

All of these are easy to come by given that we continue our post
purging activities. Note the introduction here of a measure of
thrashing as a critical quantity here 1in the scheduling
mechanism. This 1s because thrashing gives us a measure of
whether a process really does not fit within the core limits
assigned to it as opposed to a process that won’t fit Iin any core
no matter how much 1is assigned. As an example, the backup
process takes an extremely large number of page faults as it
dumps segments. But all of the faults are on different pages
(hence, no thrashing) and the page fault rate would not be

 decreased no matter how much core was assigned to the process.
In fact, the optimal amount of core would be Just enough to fit

the code and working data of backup plus a few buffer pages to

N

L.

MTB-105 Page 7

hold data wuntil it could be written onto tape. The large page
fault rate of backup could not be helped by more core. On the
other hand, a large PL/I compilation may take many pbage faults on
the code of the compiler and the temporary tree structure durilna
a compilation. Here, thrashing would be especially evident 1if
only a small amount of core were allotted to the process.
Therefore, the thrashing, it is claimed, 1s the indicator that
should be used when determining when to grow and shrink the core
limits of a process. By constraining backup to a nage pool of
the approoriate size we can aid the core removal algorithm by
forcing it to remove one of backup’s buffer pages which 1is no
longer needed rather than a potentially usable page of another
process.

The page pool limits will, of course, also have administratively
~controlled constraints which may vary from zero to infinity.
Such constraints can be used to override the page control innuts
both to force certaln processes to have better resnonse
(supposedly at the expense of system efficiency) as well as to
meter and tune the system and check out modifications to the
algorithms.

A second major interface between the scheduler and page control
is 1iIn the area of process loading and unloading. Currently the
loading of a process (i.e. paging in the PDS and DSEG of the
- process so that 1t can run and page anything else it needs
itself) is triggered by the scheduler when it decides the oprocess
should be allowed to run. Similarly, the unloading (releasing or
unwiring of the PDS and DSEG) is done when the scheduler or the
process itself has decided that the process will not be run again
for awhile. In the current system the unloading of a process 1is
accompanied by the "post purging® of the process. This includes
looking at all of the pages the process faulted on and brought in
during 1its last quantum (eligibility period). Certain functions
are performed depending on what types of pages were faulted on,
how 1long they were used, whether they are still in core, etc.
The functions are specified (dynamically if desired) by a set of
boolean equations coded 1into the post purge program. They
include:

1) writing out a modified page before 1t otherwise
would be written out,

2) marking the page as not having been used for a lona
time by turning off the ‘"used" bit in its PTW
and/or rethreading the page’s core map entry to the
Wleast-recently-used” end of the core map,

3) counting the page in the working set,
4) measuring the thrashing of the process by noting

which pages were faulted on more than once in the
quantum, and

Page 8 MTB-105

5) measuring the total page faults for the quantum -
and hence the paging rate.

Process Swapping

It 1is proposed that the post purge function be extended so that
all per-process pages in core at process unload time be written
out onto a contiguous region of disk (not bulk store).
Obviously, these pages would be swapped back into (discontiguous)
core at process load time, 1i.e. when the process 1is again
awarded eligibility. This 1is analogous to the ™re-paging”
technique used on the 645 and made feasible by the high transfer
rate and latency ontimization that could be pulled off with the
DRUM. Both of these features exist in a limited way, with the
DSU-191 disks. The transfer time for 1024 words of data is 6.7
milliseconds (the DRUK was 2.1 milliseconds) and with rotational
nositional sensing the latency can be minimized. The seek time
for the disk can be made minimal by allocating all 'swap images?
in adjacent cylinders on a 'scratch® pack. It has been estimated
that 200 to 300 users could be swapped in and out with 30 seconds
delay vner process between swanpings if each user had a swap image
of between 10 and 20 pages (a reasonable number for the
per-process pages of a process nqolt doing something 1lilke a PL/I
compilation). This estimate would have to be modified downward
as a function of the number of "large" processes competing for
resources.

A partition of disk will be allocated at bottload time as the
SWAP partition and will be divided into swap Yimages! of a given
maximum size. Each APT entry will be assigned one such image (at
bootload time) for the life of the bootload.

The dispatcher would decide when a process is to be swapped in (a
short time before it is run, supposedly). It would call upon
page control to get enough free core blocks and initiate the
appropriate ‘'scatter" read into the acquired core. The page
swapplnga orogram would upon 1ts completion, Fconnect' the core
blocks to the appropriate pages.

When a process is unloaded the scheduler will again call wupon
page control first to nost purge the process (collect statistics,
etc.) and then to swap the process out. The swap out mechanism
will consist of 1little wmors than issuing the appropriate
"scatter" write request, saving any necessary information and
freeing up the core when the disk I/0 is comnlete.

The concept of process loading will be replaced by the swap in
function. The concept of process unloading will analogously be
renlaced hy the swap out function.

Pacges that were suapped in may be paged out (to the naging device
suoposedly) during a quantum. {owever, any pages that are to be

MIB-105 Page 9

part of a new swap 1Image that are on the paging device will be
deleted from the paging device at swap out time. The only (most)
valid cooy will exist in the swap image. (Only pages Iin core at
swap out time will be assigned to the swap imace.) This freeing
of paging device records will considerably ease the traffic flow
to and from the paging device.

The benefits of this sort of process swapping are fairly clear.
The disks are used much more efficiently for the class of pages
which can be swapped. The page faults that are avoided by the
swan in presumably cost much more than the swap in code. (Much
of the cost of handling the fault is verifying that the fault
still exists, etc.) By swapping stacks, linkage, KST’s, etc. to
the disk the naces need not reside on Bulk Store. It has been
noted that of the 2000 pages of Bulk Store at MIT about 800 would
be freed up if swaoning were beina done. A system without a Bulk
Store would certainly be more efficient if swapping were beinag
done. The swapping mechanism works especially well for the
small, tightly coded subsystems that we would like to optimize.
The problems with swapning in a nrocess are two fold. First,
greater ovressure is placed on the rore freeing mechanism so that
the entire swap image may be brought in at once. This 1s
supposedly not a problem if pacge stealing is working. Indeed,
whether or not to award eligibility and hence swap in a process
will be based on whether the free core is available.

The second major problem is that a process may take longer to set
un its initial working set by swanping it in from disk rather
than paging it in from Bulk Store. Although it is true that a
process won’t be running (in real time) as soon after it is
decided to run the nrocess, the system efficiency will be higher
because less CPU time will have been spent to get the same work
done. An obvious design is to ''preload¥ a process by initiating
the swan 1in before the bprocess is to be run. Whether or not
preloading will be attempted has not been decided (the demand for
core 1s made earlier which may interact with the running
Processes)e. Usually a swan in would be scheduled a short time
after a swap out so the core freed could be used.

A third difficulty that arises with swanninag is the hich use that
will be made of the disk used to swap with. A single channel
will be saturated with 300 users and queuling effects come in to
piay long before this. Clever schemes may need toc be developed
to ease the burden on particular disks or disk channels. It very
well may be cost effective to purchase another disk subsystem
Just for swaoninag.

Note that the swap Image on disk will probably contain different
pages each time it is written. It is the ability to fchoose" the
disk address we write a pnage to that enables us to use the disk
in this manner. Several new data structures, some wired down,
must be added to the system to enable page control to determine
which pages were actually written where into the swap image. It

Page 10 M1 B-105

is the task of nage control to determine the location of most up
to date copy of a page. Lt may be |) 1In core, 2) on the paging
device, 3) on the swanning device or 4) on normal disk.

lhe pPage Stealing Algorithnm

Page stealing will be done by one and only one program set - core
control. Core control is called occasionally to repnlenish core
and as required to provide free core and accept other core as
being free. The basic algorithm to be used will be a
least-recently-used algorithm modified as noted below. There are
several narameters to the removal algorithm which are tunable bv
the system administrators. Some variables of the removal
algorithm are changed by the algorithm itself in an attempt to
adapt to changing user load and behavior.

Before the actual algorithm is described the -structure of the
core map will be briefly described.

ihe Core lap

The core map consists of a header containing global control
information and list pointers followed by an array of core map
entries (CME’s) indexed by the absolute address of the core
associated with the entry (divided by the page size). The
entries themselves may be threaded into several lists independent
of absolute address.

Associated with each CME are 1) a pointer to the PTW for the
page residing in the core block, 2) the device address of the
page, 3) the time the entry was last locked at by core control,
4) a pointer to the APT entry of the "owner" of the page, and %)
various control bits and thread pointers.

There are three threaded lists of CME’s managed by core controls
the free 1list (FL), the recently faulted list (RFL), and the
extended residency 1list (zRL). The free 1list 1s linearly
threaded and managed with a LIFO strategy. The RFL contains all
ClE’s for blocks of core recently awarded to a process because of
a naqge fault. The ERL contains all other nonsvecial CME’s.

In addition to the CHE’s threaded into the above lists there are
other Cll’s which are threaded into no list. These are?

1) CME’s for perm—wired core (core that is not in the
paging pool),

2) CME’s for blocks of core being used for read/write
sequences,

3) CHE’s for blocks of core that contain temp-wired
pages,

MTB-105 Page 11

4) CHk’s tor blocks of core for which read I/0 |is
going on, and

5) CME’s for currently unconficgured core.

1The header of the core map wilii contain the obvious nointers to
the lists as well as useful countcers such as the number of Cit’s
in each 1list or state. 7The header will also contain meterina
data and control variables used by the removal algorithm.

The actual removal algorithm works as followss

1) Check the RFL and move any CHk’s that have been in
the 1list for over alpha seconds to the tail or the
ERL turning UFF the page-has=been-used (PHU) bit of
the PTW associated with the block of core.

2) Check the head of the ERL and move any CME’s that
have been used in the last beta seconds to the tail
of the ERL turning OFF the PHU bits.

3) Free any unmodified block of core that has not been
used In the last beta seconds.

4) Initiate a write request for any page that has been
modified at some time but has not been used in the
last beta seconds and which has not been written
out since it was last modified.

ihen a page fault occurs, a block of core is taken from the free
list and placed at the tail of the RFL. The time of the fault is
stored in the CHk at this time. The RFL is a 1linearly threaded
list strictly ordered by ©time of entrv in the list. The core
removal algorithm searches this list whenever it is 1invoked and
moves as many entries from the head of the list as is appropriate
to the tail of the ERL. No entry should remain in the RFL for
more than alpha seconds (within the resolution of time between
calls to core control).

Similarly, core control 1looks at the head of the ERL, which is
also linearly threaded and strictly ordered by time of last
move! in the list and takes some anpropriate action on all CiHE’s
that have not been looked at for beta seconds. The important
feature is that the rate at which CME’s are samnled is a2 functieon
of alpha and beta and not the number of entries in the core map
(i.e. the current lap time). As long as core control is invoked
freaquently enough this sampling rate will be as constant as alpnha
and beta (which may be varied).

The core accounting will be done at two places during execution
of the removal algorithm. rirst, when a CME is moved from the

rage 12 MTB- 105

RFL to the ERL and second whenever a CME is moved from the head
to the tail (for another cycle) of the ERL. #When the page is
faulted on, the APT entry pointer of the faulting process is
placed in the CME and used to determine the account to which the
core residency should be charged. This APT entry npointer
specifies who is the ‘'owner" of the page. The removal algorithm
will, however, change the owner (by changing the saved APT entry
pointer) if a page stays in core for an Yextended? period of time
(maybe five seconds) and the page cannot be identifiled as
verunyinyg to a single process. In this case, the special fault
is set causing the owner to be recalculated when and {f the page
is ever referenced again. Pages which are not potentially
shareable pages are 1) per process pages and 2) pages of
segments which only one process is using.

It is clear now how the two problems of core accounting mentioned
earlier are solved. First, because a page will be freed soon
after it 1s no longer used the "idle system" problem goes away.
Second, by changing the owner of shareable pages that remain in
core for an extended period of time after they are faulted on, a
user will not have to pay for a page which he brings in but which
other processes use after he is throuagh.

An important refinement of the removal algorithm comes into play
when the page fault rate is higher than the rate at which core
control can free pnages on its own. When this occurs, (the free
list 1is wempty) the page fault handler calls upon core control
(before locking the page table lock) to free up a block of core.
This call however, 1s slightly different in two respects from the
standard calli upon core contiroi tTo do what 1t can. H1rst, core
control pust tind a tree core plock even 1T 1t means Looking at
UME’s which have not been 1n the kKL Tor beta seconds. bSecond,
core control, when invoked at nage fault tlme, Kknows on whose
behalf the block of core 1is to be claimed, ln particular, core
control can give the process a core block which it already owned
- if the process was at or above its page pool size already — or
core control could give the process a block which 1t did pot own
thereby allowing the process to increase his page pool size.
Note that this additional information can be used in exactly the
case Where it is most needed, i.e. when the system starts to nage
too heavily.

The vaiues for alpha and beta that are belng considered are about
50 and 200 milliseconds reéesnectively. These numbers will of
course, have to be optimized experimentally but 1t should be
noted that they were chosen 50 that core would be sampled for use
at least as frequently as today (at Mll) and hence core controil
should be able to stay ahead of the paging rate.

turther Hofes

1Two final notes should be mentioned. first, the initial
implementation attempted (if and when) will not use more than one

MTB- 105 | Page 13

lock. The current global page table lock will be used for core
control and page control. l'his means that one of the important
design goals will not initially be realized, but it also means
that a working version will be available much earlier because of
the complex and nonobvious assumptions currently made about the
page control locking strateqy.

A second item of interest is the management of the Bulk Store. [t
is currently planned that the last function of the core control
program willl be to make sure that there exist free paging device
records and that the paging device map has becn updated recently.
This function is quite analogous to that of page stealing and 1is
logically a completely separate task. However, due to the initial
locking. strategy (and the overhead of invoking the the core
control task at all) it was thought that we might as well
incorporate into it the paging device management as well. The
final design would probably have the paging device map controlled
by still another 1lock and the manager invoked at times
independent of paging or ¢ore stealing. ’

