
,_ 

MULTICS TECHNICAL BULLETIN 

To: MTB Dlstributi~n 

From: Gary c. Oixon 

D;pte: . .lanuary 13, 1978 

Subject: A T~ol for Conver~ing Ille~· 
Created by IBM Pl/I f· Co•Piler 
To Multics Format 

THE PROBLEM 

MTS- 356 

A conversion tool is need to c~nve~t·files created on an IBM 
system to Mul·ti~• standard for•at~-

Specifically, a tool for converting record-oriented files created 
by the IaM P~/I F Co•piler is needed for the progra• conversion 
effort currently underway at the Puerto Ric~n Highway Authority •. 
The same tool <or a si~ilar tool' with only •inor •odifications> 
could be used for converting files -created .by the IBM PL/I 
Opti•izing· Co•piler~~ Such a tool would be invaluable in running 
~enchmarks and in future site conversions where an JSM system is 
involved. 

Constraints 

The tool should: 

1. Process IBM files du•ped on IBM standard-labeled or 
nonlabelled tapes. 

2. Be driven by a PL/J structure· declaration whic~ defines 
the records in the file •. 

3. Run solely under the Multi~s environment, obtaining only 
the file itself <and perhaps an include Ule containing 
the PL/I structure declaration for the record format> 
f roe the IBM system. 

, ' 

__ _,~1--~-·---L~:-.. :..•-~-~-l----~----~· .. ._ti_:_~~l:.~ ... --•~'~:.L.'.~i~:~L:::_:_ __ :.~:.----·-~ 

Multics Project internal working documentation.. Not to be 
reproduced or distributed outside the Mult•cs Project. 

- 1 -



MTB-
\ 

4. Convert r·ecord-oriented fi ~es created by the ISM PL/ I F 
and PL/J Opti•izing Co11pilers1 conta1ning only 
arithaetic- ~haracter1 'ictured and bit string data. The 
i"i'ial: h1ple11entation of the tools should handle files 
conta·lnlng on.ty a single rec,ord format. Subsequent 
j•ple•entations •ight handle files containing 
self-defining records with variable for•ats. 

s. Convert to Multics s~quential or· keyed file.a If 
conversien is to·• ke1ed,ftle# the· record$ must contain 
an e•bedded key accessed by a character·st~4ng ele•ent of 
the-structur~ <or perhaps by a structure ele•ent that can 
be converted to a character string according to Multics 
PL/1 conversion rules). The program should NOT require 
that the records co•ing fro• the lBM file be in 
key-•equential order. 

6 •. The ·convers·ion program s.houtd generate a su•aary of 
converted file describing: for each PL/J data type, 
f rac t·i on of the record dee tared as that data type; 
size of each record <in the conve~ted Multics file); 
total nu•ber of records •rGcessed:· for keyed files, 
lowes-t and htgbest ·lreys created: the. total- size of 
records in the ftte (total bytes cenverted>; 
i nfor•at ion about the Multi ca fit.es re·turned 
v f i l e _is ta tu s _.r. 

the 
the 
the 
the 
the 
the 

plus 
lty 

7. The progra• should be reasonably straight•forward to use, 
and should be efficient enough to process files 
co~taining s•veral hundred thousand records in a 
reasonable tiae. ·There should be no t·ia·it <othe·r than 
Multics fi~e space Umitations> on the total nu111bef' of 
records which can be proce9ssed. 

8. The progra• should be vritten in such a way that a group 
of files sharing the same record format can all be 
processed with a mini~u• of user intervention. 

9. The progra• •ust be cognizant of all IBH PL/l data typing 
defaults and structure aapping rules. In particular, the 
IBM structure •apping rules differ SIGNlflCANTLY fro• 
those of. Mtiltics •. 

- 2 -



MTB-
~POQOSEO SOLUTION 

~ proposed solution which meets these constraints might use the 
i~llowing procedure to convert an IBM data base. 

1. The user writes a saall' Pl/.I subroutine. which contains: 

A. A Pl/I structure declaration def intng the structure of 
records in the file. This should be modified to 
include IBM defaults for data types and alignaent. A 
Pl/I default statement cauld be used for this purpose. 

B. An include file declaring the input argueent structure 
required by a file conversion subroutine <let•s call 
it convert_fb•~file~O. This structure should contain: 
the na•e of the calling subroutine <tor use in error 
•essages and calls to stu_); the attach description 
defining the input file; the attach description 
defining the output file; the attach descriptton 
defining an error di~~nostics and summary file; the 
name of the (major> structure defining the record 
format; optionally, the name of the structure element 
containing an embedded key. 

c. Code wh·id1 initializes the convert_,,ib111_file_1 input 
structure. 

o. Code which allocates the record for•at stru~ture <if 
it is based or controlled) and which references so•e 
element of the struccure1to c•use Pl/I to generate 
runtime sy•bol t~ble entries for all eleaents of the 
structure •. 

, 

E~ A call to the convert_ibe_file_~ subroutine, passing as 
arguments a pointer to the input structure, and a 
return code. 

2. The user then ce111pites the Pl/I program with the -table 
option. 

3. Finally, the user runs the program passing the attach 
descriptions for inp~t and output files as arguments (or 
perhaps the user has stered in the input structure to 
convert_tbm~file_ synonym attachment descriptiens which 
reference 110 switches attached before the program is 
run>. 

4. The convert_•ib111_.lfile_. subroutine reads records fro• the 
input ftl•# lft~ conv•rt1 th•• to Multtcs r~cords which 
ar• written into the output ff le ·(perhaps using the 
embedded key from the output record>. Conversion 
continues until .. the input file is exhausted. 

- 3 -



MJB-· 

The Conversion Subroutine 

The conversion subroutine, as currently envisioned, must: 

1. Obtain a poi·nter to its caller's stack frauae for use in 
calls to stu_. 

2. Call stu_Sfind_trunt i11e_t&y11bol to ob ta in a pointer to the 
runti•e sy•bol: nod~ for the record for•at struc~ure. 

3. Obt•in 2 te•pof'·ary s·e911e.nts fro• get_·te.tp_seg•ents_, one 
for IBM data and one for Multi~s data. 

4. Us Ing the runtime s·y•bolr nodes for the reeord for•a t 
structure, construct two symbol trees for the structure, 
one representing the IBM structure and the other 
representing the Multics structure. 

A. Data fro• the runtiae sy11bols can be obtained for the 
"ultics sy•bol· tre•, inctudfngJ offset of ele•ent 
fro• beginning of containing substructure; length of 
ele•ent; element at~ributes - data type, di•ensions, 
extents, precision and scale, etc; ele•ent na•e; 
pointers to· father, brother, child nodes. Such things 
as location of pfcture specifications, and location of 
structure el eaen·t s referenced in refer extents, •us t 
be handled in thf s sy•bol- tree. 

a. Si•i~ar data must be constructed for the llM syabol 
tree.1 using the i nforaation in the .runt-i•e syabol 
nodes plus kno~ledge of IBM data attri~utes and 
structure map-ping rules. · Equivalent picture 
specifications and refer extent infor•ation fr.o• the 
Multics tree must be mapped into the IBM tree. It is 
because this mapping ~f ·information fro• Multics to 
IBM tree must be P•rformed that the infor•ation •ust 
be stored tn the Multics tree originally, ra~her than 
using stu_ (the sy•bol table utility> to extract the 
infor•atien froa.the runtime syebol nodes as needed. 
<Also, the cost of e~tracting the infor•ation via stu_ 
for each record would be exorbitant.) 

5. Obtain space at the end of t.he IBM and Multics sy•bol 
trees for the:input and output re~ords.· In general1 the 
act~al size of each record won't be knoMn if it contains 
refer extents. Space for the IBM records should be 
aligned on the proper·~rte boundary, acc~rding to the 
re~uirem•nts of J8R~s struc~ure·mappin1 algorithm. This 
ts strictly ~et-necessary, but wilt probably provi~e for 
best atigneent of data to be converted. Note that, under 
the IBM structure eapping algorithm, a structure 
containing word-~· or doubleword-ati'gned data is not 

-· 4 -



MTB-

necessarily aligned en such a boundary a• • whole. l&M 
aligns structure etemerits,. starting- with the deepest 
elements in the structure and, worJdn9 out to the major. 
structure. Thi• leads to highly-packed data, but al~o 
leads to different data padding than the Multics 
structure mapping algori~ha. 

6 •. Using the re•ainder of the te•porary segments to hold 
these records,. call iox_Sread_record directly to read the 
records._ Then: the actual length of read records re turned 
by tox~ can be used• to determine how •ucb data there is. 

7. Pro~ess records from the input file,. sequentially until 
the file is exh•usted. 

A. Orig·l:~•t:l~,. the tape· file. should be read using 
tape_·ibm_ wt th -•aod.e asct-i to ·d•fe·r · charac·ter 
translation until we know where t~• character fields 
i" each record are~ Thi$ wi\l. read the tape in 
9-eode; storing 8-bf~"tal)e fra•es ri1ttt-justif·ied in 
9-bit Multics bytes. Therefore, arith•etic and bit 
string data will h~ve to be repacked before 
conversi•n· 

a. The input record wilt.be converted1 fro• the top down, 
on a field by field basis. ·This will allow 
self-~efining structures Cusing the refer option> to 
have the referenced ext•nts filled in before the 
extents are actually needed. 

c. As the conversion of each record progr•sses, error 
diagnostics should be issued for each input field 
containing invalid input .data <ie, data which cannot 
be converted into tbe designated Multics output data 
type>. The diagnostics should be output to the same 
Hle as the summary. statistics <to a file rather than 
the console since diagnostic information may be 
lengthy). It should.incl~de: record-number of record 
being processed; its key field ·value, if file is 
keyed; name ef field in error; an ottal and EBCDIC 
<du•p_segment~> dump of the field in error; a 
description of its location in ~he record. Soae 
default value should be stor•d in _the data field, and 
the remainder· of. the record convert ed. This will 
facilitate later patching of the field. A count of 
records·in. error should be added to the sue•ary 
statistics. Perhaps the count· should be •aintatned 
for each record field,. as well as for the overall 
record. 

- 5 -



MTB-

8. Close input and output files; generate sum•ary statistics 
in the su••ary file; close this ftle; free the te•porary 
segments; and return. 

IMP~EMENTATION RESOURCES 

The implementor of this facility- should have had some experience 
with IBM PL/J data files and data types; should be knowledgeable 
in the way Multics data types are stored; should have had 
experience in program debuggi~g interfaces (use of probe, debug, 
stu_1, decode_descriptor_1, assign_1, pack_,pic.ture_, etc); so•e 
experience reading lBM tapes. 

The ti•e required by such a person to i•ple•ent, test and 
document the converter would be about 22 person-days;.. 

1. 3 days for research. 

2. 1 day to write convert_iba_file_ subroutine 
initialization •. 

3. 1 day to write sy•bol t~ee creation code, including 
design of syabol tree nodes. 

4. 3 days to write and test IBM structure •apping algorithm. 

5. 2 days to write/test IBM-to--Multics data conversion 
routines. 

6. 2 days to write declarations, fix typing errors, get 
progra• running. 

7. 5 days to 
<assuming 

test program. on a variety ·of data bases 
that these data bases are readily available>. 

. 8. 5 days to docuaent progra11 usage and internals, sub•it 
MCR and installation f~rms, and cleanup progra•. 

- 6 -



MTB-

REFERENCES 

Manuals 

1. IBM PL/I F Compiler Reference Manual <Order No. GC28-8201>. 

2. IBM PL/I Optimizing Compiler Reference Manual 

3. IBM Syste•/360 Principles of Operatton <Order No. GA22-6821> 

4. MPM Subsyste• Writer• s &ui ie1 sections on object seg-.n't 
for•at and stu_ subroutine. 

Program Listings 

bound_probe_; 

symbol_attributes.pl1 

symbol_na111e.pt.1 

bound_pl 1_ 

p~epare_~ymbol.table.pl1 

Include f Hes 

std_sy•bol_header.incl.pl1 

pl1_sy•bol_block.incl.pl1 

runt ime_tsy•bol• incl.pl 1 

Other Programs 

assi1n •• pl1 

An llM to Multics flaed deci••l conversion subroutine 
written by warren Johnson <at PRHA 1tte> •. 

- 7 -


