MULTICS TECHNICAL BULLETIN MTB- 356

To: MTB DPistribution
from: Gary (. Dixon
Date: ~danuary 13, 1978

Subject: A Tool for Converting Files
Created by IBM PL/]I F Compiler
To Multics Format

THE PROBLEM

A conversion tool is need to convert files created on an 1IBM
system to Multics standard format, '

Specificallyr, a tool for converting record-oriented files created
by the IBM PL/1 F Compiler is needed for the program conversion
effort currently underyay at the Puerto Rican Highway Authority..
The same tool (or a similar tool with only minor modifications)
could be wused for converting files -created by the IBM PL/I
Optimizing Compiler, Such a tool would be invaluable in running
benchmarks and in future site conversions where an JBM system is
involved.,

Constraints

The tool shoutd:

1. Process IBM files dumped on IBM standard-{abeled or
nonlabelled tapes.

2. Be driven by a PL/! structure declaration which defines
the records in the file,.

5. Run solely under the Multics environments, obtaining only
the file itself (and perhaps an include file containing
the PL/]1 structure declaration for the record format)
from the IBM system.

Multics Project internal working documentation.,. Not to be
reproduced or distributed outside the Multics Project.

- 1] -

MTB-

7.

8.

Convert record—~oriented files created by the IBM PL/I F
and PL/L Optimizing Compilers, containing only
arithmetice characters, pictured and bit string data. The
initial: implementation of the tools should handte files
containing only a single record format. Subsequent
implementations might handle files containing
self-defining records with variable formats,

Convert to Multics sequential or keyed files Lf
conversion isS to a keyed filesr the records must contain
an embedded key accessed by a character string element of
the structure (or perhaps by a structure element that can
be converted to a character string according to Multics
PL/1 conversion vrules). The program should NOT require
that the records coming from the IBM file be in
key-sequential order.,

.The conversion program should generate a summary of the

converted file describing: for each PL/]l data type, the
fraction of the record declared as that data type’; the
size of each record (in the converted Multics file); the
total number of records processed, for keyed files, the
Llowest and highest keys created? the total-size of the
records in the file (total bytes converted)’ plus
information about the Multics files returned by
viile_'status_i

The program should be reasonably straight-forward to use,
and should be efficient enough to process files
containing several bhundred thousand records in a
reasonabte time, - There should be no limit (other than
Muitics fitle space limitations) on the total number of
records which can be processsed,

The program shoulid be uritten in such a way that a group
of files sharing the same record format can all be
processed with a minimum of user intervention.

The program must be cognizant of all IBM PL/I data typing
defaults and structure mapping rules. In particular, the

IBM structure mapping rules differ SIGNIFICANTLY from
those of Multics..

MT1B~-

ERQPOSED SOLUTION

~ The

2

User Interface

proposed solution which meets these constraints might use the

icdliowing procedure to convert an IBM data base.,

1« The user writes a small PL/1 subroutine. which <contains:

2.

3.

ba

A. A PL/I structure declaration defining the structure of
records in the file, This should be modified to
include IBM defaults for data types and alignment. A
PL/1 default statement could be used for this purpose.

B. An include file declaring the input argument structure
required by a file conversion subroutine (let's call
it convert_iibm_file_d. This structure should contain:
the name of the catling subroutine (for use in error
messages and calis to stu_); the attach description
defining the input file; the attach description
defining the output file’ the attach description
defining an error disgnostics and summary file’; the
name of the (major) structure defining the record

format; optionallys, the name of the structure element
containing an embedded key. '

(. Code which initializes the convert_sibm_file_. input
structure.

D. Code which alliocates the record format structure (if
it is based or controlled) and which references some
element of the structure:to cause PL/I to generate
runtime symbol table entries for aill elements of the
structure.. :

E. A call to the convert_iba_file;fsubroutine,vpassing as
arguments a pointer to the 1input structurer, and a
return code.

The user then compiles the PL/I program with the ~-table
option.

Finally, the user runs the program passing the attach
descriptions for input and output files as arguments (or
perhaps the user has stored in the input structure toO
convert_dbm_file_ synonym attachment descriptions which
reference 1/0 switches attached before the program is
runde.

The convert_ibm_file_ subroutine reads records from the
tnput files, and converts them to Multics records which
are written into the output file '{(perhaps using the
embedded key from the output recordl. Conversion
continues until. the input file is exhausted.

Mre-

The Conversion Subroutine

The conversion subroutines as currently envisioned, must:

1.

2

3.

ba

Se

Obtain a pointer to its caller's stack frame for wuse in
calls to stu_.

Call stu_Sfind_wuntime_isymbol to obtain a pointer to the
runtime symbol: node for the record format structure.

Obtain 2 temporary segments from get_temp_segments_, one
for IBM data and one for Mulitics data.

Using the runtime symbol: nodes for the record format
structure, construct two symbol trees for the structure,
one representing the IBM structure and the other
representing the Multics structure.

A. Data from the runtime symbols can be obtained for the
Multics symbol tree, including: offset of element
from beginning of containing substructure; Length of
element’ element attributes ~ data type, dimensions,
extentss precision and scale, etc: element name’
pointers to. father, brother, child nodes. Such things
as location of picture specificationss and location of
structure elements referenced in refer extents, must
be handled in this symbol tree.

B, Similar data must be constructed for the IBM symbol
tree, wusing the information in the runtime symbol
nodes plus knowledge of IBM data attributes and
structure mapping rules.. Equivalent picture
specifications and refer extent information from the
Multics tree must be mapped into the IBM tree. It is
because this mapping of information from Multics to
IBM' tree must be performed that the information must
be stored in the Multics tree originallys, rather than
using stu_ (the symbol table utility) to extract the
information froms the runtime symbol nodes as needed.
(Also, the cost of extracting the information via stu_
for each record would be exorbitant,)

Obtain space at the end of the IBM and Multics sysbol
trees for the input and output records. In general., the
actual size of each record won't be known if it contains
refer extents. Space for the IBM records should be
aligned on the proper byte boundary, according to the
requirements of IBM*s structure mapping algorithm., This
is strictly not necessary, but will probably provide for
best alignment of data to be converted., Note thats, under
the IBM structure mapping algorithme a structure
containing word- or doubleword-aligned data is not

6.

[

MTB~-

necessarily aligned on such a boundary as a whole. I18M
atigns structure elements, starting - with the deepest
eiements in the structure and working out to the major
structure, This leads to highly-packed datar, but also
leads to different data padding than the Multics
structure mapping algorithnm,

Using the remainder of the temporary segments to hold
these recordss, call jox_Sread_record directiy to read the
records.. Then:the actual length of read records returned
by iox_. can be used: to determine how much data there is,

Process records from the input filer, sequentially until
the file is exhausted.

A, Originaliy, the tape file should be read using
tape_ibm_ with -mode ascii to <defer character
translation until we know where the <character fields
in each record are. This will read the tape in
9-modes, storing 8-bit tape frames right—-justified in
9-bit Multics bytes, Therefore, arithmetic and bit
string data uwill have to be repacked before
conversion.,

Be. The input record will be converteds, from the top down.,
on a field by field basis. This will allow
self-defining structures (using the refer option) to
have the referenced extents filled in before the
extents are actually needed.

Ce As the conversion of each record progresses, error
diagnostics should be issued for each input field
containing invalid input data (ie, data which cannot
be converted into the designated Multics output data
type). The diagnostics should be output to the same
file as the summary statistics (to a file rather than
the <console since diagnostic information may be
lengthy). It should include: record nuamber of record
being processed’ its key field value, if file is
keyed; name of field in error; an octal and EBCDIC
(dump_segment_) dump of the field in error. a
description of its {ocation 1in the record. Some
default value should be stored in the data fields, and
the remainder of the record converted. This will
facilitate Llater patching of the field.s A count of
records in. error should be added to the summary

statistics, Perhaps the <count should be maintained
for each record fields as welt as for the overall
record.

MiB-

8. Close input and output files; generate summary statistics
in the summary files close this file; free the temporary
segments; and return,

IMPLEMENTATION RESOURCES

The implementor of this facility should have had some experience
with IBM PL/I data files and data types; should be knowledgeable
in the way Multics data types .are stored, should have had
experience in program debugging interfaces (use of probe, debug.,
stu_i» decode_descriptor_i» assign_» pack_picture_», etc)l; some
experience reading IBM tapes.

The time required by such a person to implements test and
document the converter would be about 22 person-days..

1« 3 days for research,

2. 1 day to write convert;ibn-file_ subroutine
initialization..

3. 1 day to write symbol tree <creation codes inctuding
design of symbol tree nodes.

4. 3 days to write and test [BM structure mapping algorithm,

Se 2 days to write/test IBM-to-Multics data conversion
routines,

6. 2 days to write declarations, fix typing errors, get
program running.

7. 5 days to test program. on a variety of data bases
(assuming that these data bases are readily available),.

. 8s 5 days to document program usage and. internalses submit
MCR and installation formses and cleanup progranm,

MTB~

REFERENCES

Manuals

1. IBM PL/L F Compilér Reference Manual (Order: No. G(28-8201).
2., IBM PL/] Optimizing Compiler Reference Manual

3. 1BM System/360 Principles of Operation (brder No. GA22-6821)

4. MPM Subsystem \Mriter's Guide, sections on object segment
format and stu_ subroutine,

Program Listings
bound_probe_
symbol_attributes,pl1

symbol_name.pl

bound_pl1_

prepare_symbol_table.,pl1

Include Files
std_symbol_header.incl.pl!
pli_symbol_block.incl.pl?

runtime_isymbol,incl.pl1

Other Progréms
create_data;Segment,gplaV
ebcdic_to_ascii_.alm
assign_.pl?

An I8N to Multics fixed decimal conversion subroutine
written by Warren Johnson (at PRHA site).

