
Multics Technical Bulletin MTB-392

To: Distribution

From: Steve Herbst

Subject: Version 2 exec com

Date: 09/13/78

Various new exec com features have been proposed over the
past two years and-discussed at design review meetings. Three
documents have appeared:

01/19/77
02/29/78
03/29/78

MTB-324
MTB-362
MTR-147

Proposed exec com features
Variables in exec com
Variables in exec-com

This MTS presents a consistent set of exec com modifications
intended for Release 7.5. It includes the most important and
least controversial of the features suggested thus far.

The most important and widely requested feature is automatic
variables. Users need a way to assign variable values that are
independent of the context in which an exec com is used. Two
constructs, &set and &value, manage automati~ variables with
names of arbitrary length and values of arbitrary length. Values
are substituted into each line before the line is executed or
passed on to the reader of input.

Another important feature is the &return statement, which
returns a value when the exec com command is called as an active
function. This construct enables users to write active function
macros the way they currently write command macros.

Other features are the optional tracing of control lines and
comment lines, a line continuation feature, a set of literals for
explicitly inserting carriage motion, and the &(n) and &!
features currently accepted by the do command and active function
(these are the only do parameters that exec com does not
currently recognize).

Other potentially useful features, such as nested &if's,
&then-&else's, and &do-&end's are omitted because of the design
problems that they raise.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page ~ MTB-392

A NEW VERSION

Adding any new feature to the exec com language necessitates
a version change. This is unfortunately true since the installed
abs io passes on &constructs that it does not recognize, without
complaining of a syntax error. Users can therefore have random
&strings in their ec's. An example is the intentional use of
&(n), currently not an exec com feature, to pass argument
parameters to the do command.- Adding &(n) to exec com would be
an incompatible change since it would -cause the values of
exec_corn arguments to be passed to do instead of "&(n)".

Similarly, any new &string in exec com is an incompatible
change since that string might already appear in ec's.

Freezing the exec corn language is a poor solution to the
compatibility problem. Instead, a new version will be installed
and optionally available. If and only if the first non-comment
line of an exec com is the string "&version 2", the new entry
point abs io v2 get line is attached in place of abs io get line.
This new entry point can implement arbitrary syntax~ though it
should support all of the existing features so that existing ec's
can be converted.

Version 2 exec corn uses double ampersand (&&) as an escape
feature for writing literal ampersand characters. Except for
literal ampersands, & is always a syntactic operator. Any
&string that is not recognized as part of the current syntax of
the language is a syntax error and interrupts execution of the
exec com. Any new &construct added to the Version 2 language
will-be an upwards compatible change.

A convert ec command will be installed at the same time as
abs io v2 get Tine. Since all of the valid constructs in
exec com -wilT have the same meaning in the new version,
convert ec leaves these intact. Any other &'s that it encounters
it replaces with &&'s. Finally, it prefixes the file with
"&version 2".

If necessary, convert ec can also convert Version 2 back to
Version 1.

Assuming wide acceptance, Version 2 will one day become the
standard version and ''&version 1" will be required at the start
of ec's in order to attach the old abs_io_get_line.

MTB-392 Page 3

VARIABLES

Automatic variables are described in MTB-362 and MTR-147.
Three changes are planned to the design that appears in those
documents:

1. The original &af value[] construct replaces the more general
&cp value(). The latter is too problematic to be handled in
the-first release since an arbitrary command language string
can use iteration to expand into several values. It is not
clear what iteration means inside an exec com. The
&af value[] construct, with surrounding brackets- required,
can-only expand into a single value.

2. Substitution of variables, active strings and argument
parameters should not be allowed to alter the syntax of
exec com control lines. In particular, &'s and white space
in eipanded values should not affect exec com syntax.

For example, the line:

&if &1 &then &2

should have the same meaning whether or not exec corn's first
argument contains the string " &then ''· If this-restriction
is not observed, exec corn's are only understandable at
run-time.

MTB-362's proposal for variable substitution is consistent
with exec corn's current practice of two-pass parsing. The
first pass-expands all substitutable constructs, and the
second pass parses the line (if an exec com control line)
and executes it. The installed exec com is prone to dynamic
modification of syntax. No one in my knowledge has ever
used this misfeature to advantage. On the contrary, it is a
potential hazard.

Version 2 has a three-stage parse. Control line keywords
are recognized first. Then portions of the line between the
keywords are expanded. Finally, the line is executed.
(Arguments to &then and &else are only expanded if they are
to be executed.) The syntactic function of a portion of the
line is determined before that portion is expanded.

A way to change syntax dynamically could someday prove
useful. If so, it should be available by explicit request
rather than by default. For example, a &rescan() construct
can cause its argument to be expanded first and then scanned
for keywords.

Page 4 MTB-392

3. The &defined() predicate, which returns true if its argument
is the name of a variable with an assigned value, is having
its name changed to &test value. Other useful predicates,
for example &test af which -returns true if exec com was
called as an active function, use the same naming
convention.

Variables are per-invocation of exec com. Their names are
hashed in a small table. Argument values~ on the other hand, are
stored by the exec_com command and cannot be changed.

The &default statement is used to assign values for exec com
arguments where no arguments are specified. For example, -the
line:

&default PCO tape -debug

causes the value of parameter &1 to be PCO if no first argument
was specified to the ec command, and so on. The string
&test value(1) still evaluates to false if there is no first
argument. The string &value(1) evaluates to "PCO", same as &1.

If the variable foo has the value "one two" containing a
space, the statement:

&default &value(foo)

assigns the default value ''one two" to the first argument rather
than "one" to the first and "two" to the second. In general,
space resulting from expansion is not the same as space in the
original line.

The keyword &none is used in &default and &set statements to
leave parameters and variables unbound. For example, the
statement:

&default PCO &none tape_04

sets defaults for arguments one and three but none for argument
two. The statement:

&set f oo &none

leaves the variable foo unbound, even if it previously had a
value.

If there is no nth argument to exec com and no default is
specified, the string &n evaluates to null string whereas the
string &value(n) causes an error.

MTB-392 Page 5

LABEL SEARCHES

Since control words cannot result
2, lines beginning with &n's do not
label searching as is done currently.
for <NL>&label.

from expansion in Version
have to be expanded during
The search simply looks

The label name, however, can
&label is followed by an
&value(label var), that string

be the result of expansion. If
expandable string such as
must be expanded as part of the

search. -

Label search begins at the start of the exec com and looks
for the first occurrence of the label. This-can be either a
constant label or the result of expansion. Two lists are kept,
one of constant labels with their positions, and one of
expandable labels and their positions. The label search first
searches the list of constant labels. If one is found, all
expandable labels before the constant label's position are
expanded to see if one of them intercepts control. If no
constant label is found in the constants list, expandable labels
in the expandables list are expanded and then previously
unreached portions of the exec com are searched for &label
statements.

Labels are only stored in the tables when they are
encountered in searches. Any portion of the exec com segment has
to be searched for labels only once.

EXPLICIT EXPANSION

Expansion is defined as the replacement of substitutable
constructs by their values.

The values of substitutable constructs such
purposely not rescanned for substitutables.
indirecting--rhrough variables must be asked for
example is:

&set one two
&set two three

&value(&value(one)) ->
&value(two) ->
three

as &value()
Therefore,

explicitly.

are
any

An

Since &value(), &af value[] and parameters rely on particular
interpretations of- their argument (&value() requires a defined
variable name, &af value[] requires an active string, and
parameters require a number), nested expressions involving these
constructs rely on the values of inner constructs to be of

Page 6 MTB-392

certain types. For example, &(&value(foo)) relies on the value
of the variable foo to be a number, and &value(&1) relies on the
first exec com argument to be the name of a bound variable.
Therefore, the statement that evaluates an indirect expression
must cooperate with the statements that set the values.

Indirecting is most useful if the assignment statements
alone can specify whether indirecting is to take place through
variables, active strings or parameters. The value of a variable
can then be set to &value(), &af value[] or &n and its value's
value substituted in later, Tndependent of which construct is
used.

For this purpose exec com requires a new construct,
&expand(), that re-expands -the value of its argument. Like
&value(), &af value[] and the various parameters, it first
expands its argument. Then, instead of looking up the expansion
in a table, it re-expands any substitutables that are there. The
expansion of a string not containing any substitutables is
defined to be the string itself. A summary of the substitutable
constructs shows &expand's relation to the others:

&value(S)

&(S)

&af value[S]

&expand(~)

expands S, then looks up the expansion in the
table of-variables.

expands S, then takes the expansion as the number
of an exec_com argument.

expands s, then evaluates its expansion as an
active string.

expands ~, then re-expands its expansion.

Suppose that the variable foo is set to "&1'' in one place,
to ''bar" at another place, to "&value(bar)" at another, and to
''&af value[plus &value(bar) 1]" at another. The expression
&expand(&value(foo)) does whatever kind of indirecting is implied
by the value of foo. In the first case it evaluates to the first
ec argument, in the second case to "bar", in the third to bar's
value, and in the fourth to bar's value plus one.

QUOTING AND REQUOTING

Since arbitrary strings can result from expansion, two
constructs are useful for quote-doubling and requoting
expanded values. These are "e() and &requote(), each
which expands its argument and then adds quotes in the same
that the &q or &r parameter adds them to exec com arguments.

more
the
of

way

- .

MTB-392

A few examples are necessary:

(first arg is a"b c)
&set foo a 11 b c

&q1 -> a 11 b c
& r 1 - > 11 a '"' b c 11

"e(&value(foo)) -> a 11 b c
& re quote (& v a 1 u e (f o o)) -> 11 a '"' b c 11

11 &q1" -> 11 a 1111 b c 11

11 &r1 11 -> 111111 a 11111111 b c 111111

""e(&value(foo))" -> "a""b c"
11 &requote(&value(foo)) 11 -> """a""""b c 111111

LITERAL CHARACTER ESCAPES

Page 7

White space and ampersands have special meaning in the
exec com language. The && feature allows a single ampersand
character to be inserted without affecting the syntax of a line.

Eight new keywords are proposed for the insertion of
arbitrary numbers of literal characters. Their primary function
is to make exec corn's more readable by distinguishing parsable
characters from non-parsable ones and to make counting of
multiple characters unnecessary (Ec's that write ec's can require
several layers of &'s). The new keywords are:

&SP(n) n literal spaces
&HT(n) n literal horizontal tabs
&VT(n) - literal vertical tabs n
&NL (n) - literal newline characters n
&FF(n) n literal form-feed characters
&BS (n) - literal backspace characters n
&QT(n) n literal double quotes
&"'[n) -n literal ampersands

If the repetition factor n is omitted, 1 is
example, &SP() is replaced by a single space.
without parentheses causes a syntax error.

assumed. For
The string &SP

Note that exec com does not process quotes, as does the
command processor. If it did, the interaction between exec com
quote processing and command language quote processing would be
very confusing.

Page 8 MTB-392

DO PARAMETERS

The two parameters &(n) and &! recognized by the do command
and active function should also be recognized by Version 2
exec com. The parameter substitution performed by exec com and
do are in all other respects identical and should remain-that way
since they are used identically to insert command-line arguments.

The first, &(n), is equivalent to &n for O<=n<=9 but also
allows n to be -10 or greater. The-second, &T, expands to a
unique chars string of 15 characters the first time it appears
in an-ec, and thereafter to the same 15-character string. It.is
useful for naming temporary entities unique to a particular
invocation of exec com.

The parameter &nm where n and m are digits (for example,
&10), currently accepted by exec com to mean the nm'th argument,
is not recognized that way by the-do command or active function.
This string in a do command line expands into the value of the
nth argument concatenated with m. For total compatibility with
do, exec com should interpret-&nm the same way. The convert ec
command should map existing occurrences of &nm into &(nm).

CONTINUATION

The only way currently to put a long line into an exec com
is to run it off the end of the printing line. The lack of a
continuation sequence is annoying when typing and makes ec's less
readable than they could be. Since there is often no substitute
for a long command line, a continuation feature has been added to
Version 2.

The character sequence &+ at the beginning of a line
identifies that line as a continuation of the preceding line.
The abs io v2 get line program has to look ahead when it is
processTng a line to see whether the next line begins with &+.
White space at the end of the line being continued is flushed,
therefore if necessary it must be included after the &+ on the
continuation line.

The &+ character sequence is not a normal keyword in that it
is not delimited on the right by white space or left parenthesis.
Instead, it is followed immediately by the first character of the
continuation.

~. -

The &+ sequence is also allowed at the end of a line to make
it clear to people that the line is being continued. In this
case, the next non-comment line must begin with &+ or else a
syntax error occurs. ~

-· .--~-·A

MTB-392 Page 9

COMMENTS

A comment in the existing version of exec com requires a
line to itself. Version 2 allows them anywnere in the line,
identified by &<white space>. The remainder of the line is
ignored as a comment. Comments can therefore be used to explain
the line-by-line operation of an ec.

White space before comments is flushed, allowing comments to
be adjusted to a particular column position. The &+ sequence at
the beginning of a line continues the portion of the previous
line that precedes any comment.

WHITE SPACE

White space is arbitrary combinations of the four characters
SP, HT, VT and FF. This definition is the same as the one used
by abbrev and the command processor. White space is flushed
before comments and after the keywords &then and &else. Control
statements use white space to delimit their arguments, but
otherwise ignore it. White space is stripped before expansion
and can be added by means of &SP, &HT, &VT and &FF.

TRACING CONTROL

Two new statements are proposed for tracing control lines
and comments. These are "&control line on" ("&cont·rol line off")
and "&comment line on" ("&comment Tine off"). Their o~eration is
analogous to- "&command line on" and "&input line on". They
complete a useful set of-tracing modes. -

ACTIVE FUNCTION USAGE

In order to write ec's that return values, as in:
I
sm [ec last_installer pl1_abs] I'm changing •.•

it is necessary to have an exec com statement that returns text.
The new &return statement is equivalent to &quit but does one of
two things. If the exec com command was called as an active
function, &return returns the remainder of the (expanded) line as
the active function return value. Any white space in the line is
included in the return value. If exec com was called as a
command, &return prints the remainder of the-line and quits.

Page 1 O MTB-392

The following is a summary list of new Version 2 features:

EXECUTABLE STATEMENTS

&control line on/off
&comment-line on/off

&set
&default

&return

(for variables)
(for missing exec_com arguments)

(for exec com active function)

SUBSTITUTABLE EXPRESSIQNS

&value(•••) value of a variable
&af value[..•] expansion of an active string
&expand(•.•) re-expansion of substitutables

"e(...)
&requote (..•)

&none null binding for &set and &default

&test value(.•.)
&test-af()

TRUE if variable defined
TRUE for ec active function

&!
&(n)

&SP(n)
&HT(n)
&VT(n)
&NL(n)
&FF (n)
&BS (n)
&QT (n)
&Tn)

OTHERS

&+
&<SP>

unique string, as in do command
argument ~, as in do command

n literal spaces -n literal horizontal tabs -n literal vertical tabs -n literal newline chars -n literal form-feed chars
n literal backspace chars -n literal quotes -n literal ampersands

start a continuation line
comments anywhere in line

