MULTICS TECHNICAL BULLETIN - 393 e
~ To: Distribution

From: Bob May

Date: September 20, 1978

Subject: GTSS MTB 393

This MTB contains the proposed definition for the GCOS TSS
Environment . Simulator. 1t also contains preliminary
documentation for certain tools that are used in the construction
of the simulator,

The GCOS TSS simulator provides a user interface that 15
nearly identical in most respects to that of native GCOS TSS.
Its purpose is to provide GCOS users with a means to execute
native GCOS software without <change. GTSS is not intended to
ever be totally identical to native GCOS TSS in either function
or performance. It is intended to provide a reasonably complete
'F~ subset of functions with reasonable performance.

This document is intended to be Something more than an MTB.
It is expectea that it will be the basis of ®™MPM, PLM, and
Marketing literature. By oproviding all relevant information in

one place, readers can easily use what they need and ignore what
they don't need.

ALl comments should be addressed to:

Bob May
May.Multics on System M in Phoenix

or

HVN 341-7295/7466
(602) 249-7295/74656

~ Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

DRAFT: MAY BE CHANGED -1- GTSS MTB 393

INIRQRUCIIQN

This MTB is intended to fully describe the user interfaces for
the wCuS TSS Environment Simulator, hereafter <called GTSS. In
addition, several of the major subroutine descriptions are
included as a means of documenting the internal design of the
simulator.

Additicnally, the opreliminary descriptions for gcos_debug and
gcos_Llibrary_mgr are included. These tools are being used in the
construction of GTSS and will be submitted for installation after
cleanup.

NADING_CONYENIIQNS

The 6TSS tacility consists of a command interface and a large
number of supporting subroutines. The command interface will be
the gcos_tss {(gtss) command. ALl subroutines will have a prefix
ot gtss_.

The tormal name of the facility will be the GCOS TSS Environment
Simulator, The term encapsulation is inappropriate and will not
be used.

YARKEIING KEQUIREMENIS_EQR_QISS

The followinyg items are given 1in an effort to define the
“marketing requirements',., They are in lieu of a formal document
from Marketing.

o) No formalized, "Complete'" List

No list of functions required was generateds other than
"nrovide what 1s provided by native GCOS TSS5". It is not
sufficient to List all documents related to GCOS TSS as the
definition of GT7SS because not all functions are documented
in manuals, S5ee Appendix A for some unofficial requirements
as defined by members of the Bell Canada programming staff.

o) As close to "Exactly the Same'"™ as possible

Wwithin the constraints of time and resourcess, GTSS
interfaces will be as close to native GCOS TSS interfaces as
possivles, with a few exceptions. The exceptions will be in
those areas where it s felt that Multics functions are
sufficiently desirable that an incompatibility is justified.

DRAFT: MAY 8t CHANGED -2- GTSS MTB 393

4/J System Release Level

The native GCO0S object code and the executive interfaces
provided will be as of GCOS Release 4/J-S (Supplement).

Identical execution of slave object codes including slave
system software o

Within the Llimits of processor compatibility, native GCOS
stave object code will be executed "as-is" on the Multics
processor. :

Identical content of user files

The wuser files will be identical in format to'those on
native GCOS. ALL considerations due to the Multics virtual

memory and segment sizes will be transparent to the GTSS
user,

Identical user terminal interfaces

Multics terminal interfaces are wused in GTSS rather than
those of native G6C0S. It is felt that the benefits of using
the Multics 1interfaces, such as full-duplexs, type-ahead,
canonicalization, etc.» sufficiently compensate for the
problems of incompatibility. See below for detailed
descriptions of these differences, The reader should note
that these differences are with respect only to the terminal
1/0, and have no relation to the command syntax.

‘Paper tape 1/0 will be provided but not in the initial

release, It requires further study to determine what 1is
needed. '

Identical Performance

It is not a goal of this development to provide a facility
that is equal in performance to that of native GCOS TSS. A
reasonable effort will be made to be as efficient as
-possible. '

Support command, user libraries

User command file processing will be supported after the
initial release (MR6.9).

DRAFT: MAY BE CHANGED -3- GTSS MTB 393

QLo RESION_PHILQIQPHY

User libraries will be supported in the initial release.

Utilities for file/hierarchy transfer between GC0OS and
Multycs

The gcos_fms command provides a GCOS USER RESTORE facility

for the butk transfer of files from GCOS to Multics. It is
the subject of another MTB,

R

The following items define the overall design considerations for

uTSsS,.

See Appendix 3 for a discussion of alternative designs

considered,

Q

Aim toward "Identical Black Box"

This 1s the primary requirement. Any site that wants GTSS is
likely the user of native GCOS TSS, It is incumbent on GTSS
to minimize the interface differences between the two
facilities in order to minimize the wuser training and data
conversion requirements.

Direct execution of GCOS object code

Because the Multics CPU is a pure superset of the GCOS CPU,
it is possible to run native GCOS by switch the processor to
6(C0S mode. while operating in Multics mode, there are a few
functional differences in instruction functions, ie., use of
the BAR modes, and Address Register operation versus Pointer
kegister operation. These differences can be hidden from the
6GCOS object programs so that slave GCOS object programs need
nc alteration. This greatly simplifies, or, more correctly.,
makes possible, the development of the GTSS simulator
package,

Avoid GCOS hardcore, privileged code

The use of hardcore and/or privileged code from native GCOS
was considered and dropped- the task of providing an
environment that would allow these types of modules to run
as-is, Or even with modifications, is too great at this time.

Use primitives ot Multics Operating System for management of
user process

DRAFT: MAY 8Bt CHANGED -4~ GTSS MTB 393

Much of the GCOS TSS executive must concern itself with the
management of multiple time-sharing users., The GTSS
facility accommodates one user per process and leaves all
process management to the Multics operating system, This
greatly simplifies the function of GTSS.

This implies a user interface difference, however., Since
the GTSS implementation does not provide any accounting
function of 1its own, there will be no accounting function
similar to native GCOS TSS. Thus, billings, which on GCOS
includes terminal 1/0, will change for the users.

o) No Conversion of User Files» Including Programs, Datas
Command Files, etc.

This applies to all user files, whether they are programs or
data., Extreme caution has been taken in the design of GTSS
to ensure proper operation with existing files that may be
brought over from native ¢C0S. This does not apply for file
data that is dcependent on processor timings, accounting
information - and similar information that is
machine-dependent.

o GTSS Simulator to interface at the derail level

The derail instruction and subsequent fault provide a clean
separation between the GC0S slave object programs and the
GTSS executive. Machine conditions are saved and restored.,

generally with minor changes, when GTSS returns control to
the user.

o} Write GTSS in Multics PL/I

Since GTSS is only a "black box" interface to the GCOS
object programs, there is no reguirement to write any GCOS
code as part of the executive interface,.

DRAFT: MAY BE CHANGED -5- GTSS MTy 393

-

CISS _AKCHIIECIURE

The following figures
indicate the flow of
GTISS.

give the overatl structure of GT7SS, and
control between the GCOS object code and

GTSS ARCVUITECTUVURE

vsel
TeRMINAL

_ [
bPRU .
AN usER °
&T33S SLAVE
BEXEC ~___ o AReRn
RTN

MULTVCS
SVESTEMN

& LOS VSER
3R <MD
L\ Y-

DIRAF T MAY BE CHANGED -6~

GTSS MTB 393

MULTICS
USER
PROCESS

GTSS

IN\TIALIZE
USER

[PRIMITIVE
INTERPRETER

PROGRAM

DESCRIPTORS,
COMMAND
LANGULAGE,
AND PRIMITWE
LISTS FoR
UBSYSTEMS

BUIL.D
MODE

DRAFT: MAY BE CHANGED

LOAD GCOS
TSS
SUBSYSTEM

EXECUTE
SUBSYSTEM
OBTECT CODE

GTSS MT8 393

J

PRL PROCESSOR

DETERMINE wHick DRL

N
ROUTINE FOR DRL X

DRL FAULT

EXECUTING GCos
TSS SLAVE PROGRAM

\DRL X

ARGUMENTS
NEXT INSTRUCT o N

COUNTER AND RETURN

T INCREMENT PROGRAM

DRAFT: MAY OE CHAJGED GTSS MT8 393

GISS_IMPLEMENIALLOQN

The approach to GC0S TSS simulation involves an interactive user
interface which Llooks Like GCOS timesharing and a simulated
environment which allows a user to execute GCOS TSS subsystems.
This approach 1is Dobroken down into the following List of
functions:

1. Recognition of GCOS command language for each subsystem using
tables from TSSA. Each command recognized has a corresponding
List of primitives to be interpreted.

2. Interpretation of 7SS primitives, There are a total of 12
primitives to be 1interpreted. They provide for stacking the
current subsystem and <calling a new one, initiating the
loading and execution of the <current subsystem programe.
initiating the pbuilding of input, returning to the subsystem
at the previous level, manipulating bits in the subsystem
switch word, and conditionally executing blocks of primitives
under control of specified bits in the subsystem switch word.

35« Providing the command Lloader function which allows a user
program stored on an H* file to be loaded and executed. The
command loader is invoked whenever an unrecognized command 1is
given.,

4, Providing a basic Line editor which takes input from the

terminal and merges it in line numbered sequence with the
current file.

5. Providing a static DRL handler similar to the MME handler in

the GCOS batch simulator. This handler uses a transfer
vector to <cause the appropriate routine to be executed for
each DRL,

The derail processing functions are implemented as separate
routines so that development of GTSS <can be cleanly divided
amonyg multiple developers.

DRAFT: MAY BE CHANGED -9- ‘ GTSS MTHB 393

GISS_JlUS_Qyeryicw

The procedure gtss_ios_. supports disk I/0 for the batch and
timesharing environment sSimulatorse. This procedure simulates
GCOS physical I/C and the "ios" in its name refers to the GCOS
Input Output Supervisor.

The main entry point to this routine is gtss_ios_3%i0. This
entry point interprets GCOS I/0 select sequences to perform the
disk I/0 for MME GEINOS for batch simulation and DRL DIO for
timesharing simulation. Refer to DD 19 (General Comprehensive
Jperatiny Supervisor) for an explanation of MME GEINOS, DD 17
(1TSS System Proyrammer's Reference Manual) for an expltanation of
DRL DIV and D8 82 (6COS I/0 Programming) for a general discussion
ot GCOS 1/0. The gtss_ios_3%i0 entry point supports file input and
output and (for batch) file spacing for linked files.

There are five additional entry points. Accessing and
deaccessing tiles are accomplished by gtss_1os_%open and
gtss_tos_%close, File size may be changed by
gtss_t1os_dchange_size. The lLast two entry points are

specifically for timesharing. The DRL SWITCH which exchanges two
temporary file names is supported by gtss_ios_%exchange_names.
The DRL FILSPF which does file spacing on Llinked files 1is
supported by ytss_ios_$position. More information about these
six entry points is given in the subroutine description of
gtss_iovs_ which follows later in this document,

The gtss_ios_ module provides the ability to open and close
files and supports atl functions that are performed on open
files. This is the rationale behind grouping these functions
into one module. :

The data structures necessary for file 1/0 may be classified
as those common to batch and timesharing and those specific to

one of the two simulators, The PL/I include files
gtss_file_attributes and gtss_disk_file_data contain the data
structures which will be common to both simulators {(once the

vbatch simulator has been updated to use gtss_ios_). The routine
ytss_1ios_ uses only these data structures. The only information
specific to each simulator is the symbolic name by which each
tile is referenced. Time sharing uses an 8 character ASCII name
stored in the AFT (Available File Table,) Batch wuses a two
character BCD file code,

For timesharing this information is maintained as a hashed
tist of names in a structure described by gtss_aft_.incl.pli.
This structure called gtss_ext_%aft is maintained by the
gtss_aft_ routine which has entry points for adding, findings, and
deleting names. The corresponding batch structure for storing
BCD tile codes has not yet been defined,

The data structures common to timesharing and batch may, for

permanent files, be further broken down into information which is
needed only while the file is open and information which must be

DRAFT: M™MAY BE CHANGED -10- GTSS MTB 393

stored permanently in the file system. Those needs are covered
by gtss_file_attributes.incl.pli and
gtss_disk_file_data.incl.pll, respectively.

We have adopted the goal of storing no Multics control data in
the user's physical file space. This means that there must be a
place provided for storing permanent file attributes in the
Multics storage system separate from the wuser®'s file. It would
be possible to store the attributes for a group of files in a
single segment, but we have initially taken the simpler approach
of using added names to hold the required attribute information.
GCO0S file names are restricted to no more than twelve characters
so it will always be possible to add these names. See the

description o¢f gtss_attrioutes_mgr_ for details of the naming
syntax.

The attributes data has a structure defined by
gtss_file_attributes.incl.plt. The attributes structure

currently includes the current size of the file, the maximum size
that the file can ygrow to, one word of user attributes, and a one
word file description as supplied by timesharing's DRL PASDES.
Potentially this data will also include <control information for
regulating concurrent file accesses and other attributes as
needed (by IDS for example).

The structure gtss_ext_3%$disk_file_data contains information
which must be maintained about each open disk file. This is an
arrayed structure which has entries for 41 files. This
corresponds to a maximum of 40 open files for batch plus one
entry for temporary space used by gtss_ios_%exchange_names,
Under time sharing a maximum of 20 files can be open.

Under timesharing the entry for a particular file is located
in gtss_ext_$disk_file_data by using the index corresponding to
the index of the file name in gtss_ext_$aft., This index 1s
returned by any of the entry points gtss_aft_sadd,
gtss_aft_3$find, and gtss_aft_%$delete. Figure 1 shows an example
of a timesharing file <called MYFILE with the file information
being located by using the index corresponding to the position of
the file name in the hash list.

The 1intormation maintained in gtss_ext_%disk_file_data
includes a <copy of a GCOS PAT (Peripheral Attach Table) body.
This includes a flag which indicates whether the file was opened
in random or linked mode. (A linked file can be opened in random
mode but not the other way around). For linked files the current
position within the file is maintained.

Other information about the file includes whether it is a
multisegment file (MSF) and the permissions requested when file
is opened. Under this implementation the wvarious possible GCOS
permissions are collapsed to read and read/write.

If the file is a MSF there 1s a pointer, msf_array_pointer
which points to an array of pointers., msf_components, to each

DRAFT: MAY BE CHANGED -11- GTSS mMTB 393

component of the MSF, This possibility is illustrated in Figure
1. The array msf_components 1is allocated only for multisegment

iiles. The current implementation provides for a maximum of S00
components in an MSF.

Inere is also a pointer., attributes_ptr which points to the
previously discussed attributes data for a permanent file. For a
temporary fil2 the same attributes structure must be allocated in
a work area and initialized prior to calling gtss_ios_%open,

Finally there is a pointer to an msf_manager file control
olock. The msf_manager 1is used to obtain pointers to file
components and grow and shrink files as appropriate.

CRAF1: MAY Bt CHANGED -12- GTSS MTB 393

FIG6. 1

DATA STRUCTURES FOR A MULTISEGMENT

TIMESHARING FILE

AFT

fASK LIST OF FILE
NAMES

Fiee |

FElLE 2

-~ e 9

- DISK FILE DATA

10 FORMATION ABouT
oPER FILES

pe—

EMTRY FOR _FILE |

EVTRY FOR EILE 2

4

MY FILE
-]
(-4

v

ARRNY OF POINTERS TO
FLLE COMPNENTS

Y\s‘F_ co \Po AP n‘L" U)

mesf Ceapo ne wis (2)

A0 ea

COMPONENT ©O
o MYFILE

Compo NENT |
O0F MYFILE

ENTRY FoR MYFILE
’Pcb~p+r

athr bytes —ptr
Msﬁ;at-w/_pv‘r
PAT BobY

p’e_}amﬂ VG la

—

MAY BE CHANGED

S

R

-13~

ATTRIBUTES 5TRUCTURE
FOR THIS PARTICLVLAR
FILE, conThins THE
Forlevirg FERI\ANE AT
NFORMATION:!

MAX 51ZE

CURRENT 91 215

NON-NOLL Fi At~

MobE (LINKED o R

RANDOM)

(V2ED BY Mﬁ-ﬁmanayé’b—)

FILE ConTROL BL(ckm

JERMINAL _INIJEREACE

LTSS will use existing Multics terminal interfaces wherever
possible. It is felt that the GC0S TSS interface 1i1s too

restrictive (no echoplex, full duplexe canonicalization,
type—-aheads etc.), and that the users will be willing and able to
learn the Muyltics interfaces in order to get the Multics

functions,

See below for a discussion of terminal interfaces as they relate
to the 6CUS user community.

5ome extensions to Multics will be required to accommodate
certain GCOS ISS requirements. GCOS TSS uses trailing white
space (blanks) on input to input a blank Line, (There is no null
Line concept as in Multicss a null line in GCOS is a line with
some numpber of blanks.)

Additionally, GCOS TSS accommodates paper tape I/0. PPT I/0 is a
requirement for Bell Canada. The mechanism for paper tape is
still under study. '

The following parayraphs describe the steps to be takenm by a user
who wants to use GTSS:

o) User first Lloys on to Multics

The user will Llog into Multics as a normal Multics user, As
such, the user will be subject to normal Multics Answering
service controls as applied by the system and project
agministrators.

o) GTSS s called

To enter the GTSS facility, the wuser types the gcos_tss
(gtss) command. Options are provided to control certain
Multics—-related functions,

when the wuser types 8YE under gcos_tss, the wuser will be
returned to command level, For those individual users who
do not plan to use the Multics command functions., a simple
abbrev/exec_com can be set up to automatically Llog out the
user after a BYE,

0 User [d and password input

There will be no additional password required of the user,
Under certain modes of operation, the user must give the
6C0S TSS-like USERID. This value is wused in the mapping of
wC0S pathnames into Multics pathnames.

DKAFT: MAY Bt CHANGED -14- GTSS MTB 393

o Break key functions normally (as on native GCOS)

The use of the break key will be processed as on native GCOS
7SS, where it causes the currently executing
subsystem/command to be reset. An option is provided for the
gcos_tss to override this and cause the user's process to go
to Multics command Llevel. See the cescription of the
gcos_tss command for additional details.

o System responds with line feed after each carriage return

On native GC0OS, the user type a CR to indicate the end of
the input Lline. 6CO0S TSS generally prints a New Line and

asterisk to indicate that it is ready to accept the next
input line,

o] GCOS erase and kill characters provided (Multics set_tty
command option)

The GCOS TSS erase and kill <characters will not be set by
the gcos_tss command., It is felt that the standard Multics
erase and kill characters should be used to facilitate
growth into native Multics. For those users who must have
this, the set_tty command may be used to set these values,
There are no plans to have the system respond with "DEL"
upon receipt of a line delete.

o] Terminal input/output Like GCOS with few exceptions

If GTSS <can provide additional detail for the user when
reporting errors, it will.

DRAFT: MAY BE CHANGED -15- GTSS MTB 393

JEBUINAL.IUIEBEACE _DIEEERENCES

This section describes the user terminal interface differences
between the Multics GTSS and the native GCOS Time Sharing System.

USEB_S1GN-ON_PROCERURE

The sign-on procedure and system greeting message pertaining to
Multics Lloyg-in is described 1in the Multics Introductory User
Guide (AL4U) .,

The GCOS Time Sharing System lLog-on procedure is described in the
TSS General Information Manual (DD22).

LNBUI LINE_IRANSMISSION_CONVENIIQN

The GCOS Time Sharing Systenm convention to indicate the
comptetion of the typed input Line transmission is by a carriage
return, an ASCII] RETURN character (octal code 015),.

The Multics GTSS <convention to indicate the <completion of the
typed input line is either the ASCII LINE FEED character (octal
code U12), or the Carriage Return {(octal 015). The default is the
New Line, but can be changed with the set_tty command to be the
Carryaye Return (set_tty -modes Lfecho),

ERITING_CONVENIION

Two editing editing capabilities on the typed line are available.
They are:

1. the ability to delete the latest character or characters.
2. the ability to delete the entire line,

Characters or lLine deletions are effected by means of two special
characters designated as control characters, These two
characters may differ between terminals.

€03 Time Sharinyg System editing control characters are

Eor_teleprinter_terminals.

character cootrel_fupction

o (commercial at sign) character deletion
CTRL plus X keys line deletion
bor_lgM_¢2741 or UATEL _tecminals

character gontrol _function

LRAFT: MAY BE CHANGED -16- GTSS mTB8 393

174 (or degree symbol) character deletion
t line deletion
NOTE: Line deletion does not occur until a carriage return is
given or ATTN (IBM 2741) or INT (DATEL) is pressed.
The editing rules are as follows:

1. Use of the character-delete control deletes from the line
the character preceding the deletion character; use of p

consecutive deletion characters deletes p preceding
characters (including blanks) up to the beginning of the
line. Although the <character delete <character 1is a

printable symbol it does not become part of the line,
For example:
*ABCDFQAE would result in ABCDE being transmitted.

2. Use of the Lline-delete control deletes the entire Line.
The characters DEL are printed to indicate deletion,

For example:

*ABCDEF CTL/X DEL (all characters deleteds
a carriage return is automat
supplied)

- ready for new input.

The Multics GTSS character and line deletion <control character
conforms to the Multics editing convention., The two editing

control characters for teleprinter, IBM 2741 and DATEL terminals
are:

character sontrol_function
(number sign) character deletion
g (commercial at sign) lLine deletion

The editing rules are as follows:

1. The character delete control symbol deletes from the line
the character typed preceding the deletion character.
Several successive number signs deletes an equal. number of

typed <characters opreceding the number sign. When the
character-delete <control is the only symbol in a oprint
position, it erases itself and the contents of the

DRAFT: MAY BE CHANGED -17- GTSS MTB 393

icaltly

previous print position, Although the delete character is
a printable symbol it does not become part of the line.

One character-delete symbol typed immediately after "white
space'” causes the entire white space to be erased. (White
space is defined as: any combination of spaces and
horizontal tabs)

The penefits ot the white space concept are:

a, Reduces the number of keystrokes necessary to remove
any white space

be Eliminate the need for a user in remembering how many
spaces or horizontal tabs have been typed on a line

For example:

TheSSne#i#tfinext
or

TheSTHnext

where S is a space and T is a horizontal tab produces:

Thenext

2. The Lline delete-control symbol deletes the contents of
that Line up to and including the line delete control
character,

For example:

This i1s atektaWhat is this
produces:

what 1s this

The pMultics wuser terminal interface provides the user with the
ability to define the <characteristics and modes of a specific
terminal associated with terminal input/output by using the
set_tty command. With this command the wuser can set various
modes to effect <certain terminal action such as specify the
character-delete and line-delete symbolss, "echo" a carriage
return and or Lline feed etc. For detail description of the
Set_tty commands refer to the Multics Command and Active Function
Manual (AG92).

DRAFT: MAY BE CHANGED -18- GTSS MTB 393

ESCARPE_CHARACIER_CONVENIIQN

The Multics GTSS conforms to the =established <character escape
canvention of Multicss, represented by the Left slant (\).

Escape conventions are provided for terminals that do not have
full ASCII character set and are described in the Multics
Programmers' Manual Reference Guide (AG%91).

The universal escape conventions are:

1. The string \d1d2d3 represents the octal d! d2 d3 where di is a

digit from zero to seven. Any arbitrary <character can be
represented this way.

2e Local (i.e. concealed) use of the newline character that does
not go into the computer-stored string on input and is not in
the computer-stored string on output is effected by typing
\<newline character>,

3. The character \# places the delete control character into the
input string.

4, The character \g places the Line delete control character into
the input string.

5. The character \\ places a LlLeft slant character into the input
string.

6. The solid vertical bar () and the broken vertical bar (l) are

equivalent representation of the graphic corresponding to
ASCIIl code 174.

The escape conventions described in items 1 through 5 above apply
only if none of the characters involved overstruck.

DRAFT: MAY BE CHANGED -19- GTSS MT8 393

MSEB_PBOGRAU_INIEREACE
For those derail functions that are implemented, it is the goal

that slave oprograms will experience the same interface as they
would on native GCOS.

o Proyrams use normal derail to obtain TSS services
The derail fault will be caught by Multics and passed to
GTSS., The machine <conditions are examined to determine the
nature and validity of the fault. Legitimate derail requests

are processeds the IC is adjusted to pass over the derail
calling arguments, and control is returned to the user,

o Privileged code not accommodated

The effort to accommodate privileged code is not justified
at this time,

9} Existing user subsystem, Linked object files usable as is.

This must be, as part of the "no conversion" requirement.
je.e,s recompilation and linking not required

DRAFT: MAY BE CHANGED =20~ GTSS MTB 393

SIMULAIQR_ACCOMMODAIIOQN_QE_IHE_GCOS_EILE_SYSIED

Many of the GCOS File System functions can be mapped onto
Multics. These will be done. However, there are many
comprehensive facilities with GCOS for operating system managed
file integrity and concurrent access control. These functions are
not planned at this time.

EILE_SYSIEB_NAMING CONVENIIOQNS

The GCOS Time Sharing System <character set for names may be
composed of alphanumericss,periocd and minus signs,

A name consisting of zeroes is specifically prohibited. Blank
are not permitted. It multiple word names are desired then the
words must be separated by periods or minus signss not blanks.

A maximum of eight characters or less is length is normally used
for file names. Catalog names may be wup to 12 <characters in
length and composed of the same characters as file names,

To access a file with a name longer than eight —characters, an
alternate name must be given from one to eight <characters in
length., The renaming is local and temporary.

The Multics GTSS character set for names may be composed of at
least one nonblank up to a maximum of 32 characters, chosen from
the full ASCII character set.

The greater (>) character is specifically prohibited in
entrynames, since it is used to form pathnames, Other characters
not recommended. for entrynames are:

less-than (<), asterisk (*x), question mark (?), percent (%),
equal sign (=), dollar sign ($), quotation mark ('),

left slant (\), all ASCII control characters (tab, carriage
return, etc) and parenthesis.,

Non ASCII characters are not permitted in entrynames.

Entrynames may consist of upbPpPercase and Llowercase alphabetic
characterss,digits, underscores (_)., and periods (.). The
underscore is used to simulate a space for readability. The

period is used to separate components of an entryname, where a
component is a logical part of a name, (i.e. a PL/I source
segment might be named square_root.pl1).

DRAFT: MAY BE CHANGED -21- GTSS MTR 393

FILE_SYSIEM.ACCESS_MUDES

Pultlcs_Access lodes

The access modes for

The access modes for

DRAFT:

read

execute

write

null

status

modify

append

null

segments:

the process can execute 1instructions that
cause data to be fetched (loaded) from the
seyment,

an executing orocedure can transfer to this
segment and words of this segment can then be
interpreted as instructions and executed by a
processor,

the process can execute instructions that
cause data in the segment to be modified.

the process cannot access the segment in any
W3Ye

directories are:

the attributes of segmentss directories, and
lirks contained in the directory and certain
attributes of the directory itself can be
obtained by the process.

the attributes of existing segments,
directoriess, and links <contained in the
directory and certain attributes of the
directory itself can be modi fieds and
existing segments, directories, and Llinks
contained in the directory can be deleted.
new segmentss, directoriess, and links can be
created in the directory. :

the process cannot access the directory in
any way.

MAY BE CHANGED -22- GTSS MTB 393

GCOS_Access_Modes

The access modes for both files and catalogs:

r read

W write

a append

e execute
rec recovery
p purge

c create

L Lock

m modify

X exclude

Allow transfer of information from file toO
program but not from program to file.

Allow transfer of information both from file
to program and program to file. Anyone with
write permissions, thus, has read permission.
Same as read permission,

Allow run on file only in time sharing mode,
Execute permission is restricted to time
sharing mode,

Allow write when the file is abort locked or
has defective space. Also accept MME or
directive to abort lock the file or to reset
an existing abort lock. Anyone with recovery
permission is also given permission to write
and hence read.

Allow file to be deleted or <catalog to be
deleted and all subordinate files to be
deleted. Anyone with purge <can also perform
any of the actions permitted by recovery.,
including write and hence read.

Allow catalogs and files to be entered as
subordinate to this catalog

Allow MME or directive to security lock the
file or catalog or to remove an existing
security lock. A security lock does not apply
to a user with lock permission.

Allow catalog or file descriptor to be
modified. Allow entries to be made in catalog
for subordinate files or <catalogs. Anyone
permitted to modify is allowed to perform any
actions. Hence modify includes create, lOcCk.,
and purges, that in turn includes recovery and
hence write and read.

The specified user has no access toc the
catalog or file.

DRAFT: MAY BE CHANGED -23- GTSS MTB 393

MABRRING_PEBDISSIONS _EBOM_QLOS_JO MULIICS

(create catalog)

| r W a e P m L c X
i
|

r I X X X X X X X X
i
l

A W | X X X X X

|
}

e | X X X b X X X X
|
I
)
|

3 | X
|
|

B m | 1 2 1

|
|

a | X X
i

DRAFT: MAY BE CHANGED -24- GTSS MTB 393

(create files)

I r W a e p m L X
|
J

r] X X X X X X X
]
|

C w } X X X X
|
|

e | X X X X X X X
|
i
i
|
s |
|
l

D m | 1 2

|
|
a |
|

NQIES:

17 Needed to allow deletion by anyone else., This causes problems
in that someone can also delete other segments as well.

2 Modify Nnecessary to allow the changing of the file's
permissions, However, this allows deletion of all
segments under the directory.

A Permissions set on initial acls on segments

B Acls set on the created directory

C Acls set on the segment created

D Acls which must have been set on the superior directory.

Permissions are carried only to next level and are not
propagated down through the subtree, as in GCOS.

ODRAFT: MAY BE CHANGED ~25= GTSS MTB 393

QLUS_Eile_Attribuies

An interim mechanism is used for the processing of GCOS file
attributes., GC0S file attributes are required because GC0S TSS
allows the user to specify that default modes of processing are
to be applied. File attributes include the sequential/random
creation mode and the maximum file size (as opposed to current
file size). Files larger than 256K are not uncommon on GCOS,

The appropriate place to store information of this nature 1is
the branch oroperty lists proposed 1in MT8 2107 since this
facility is not available and cannot be developed within the time
constraints of GTSS delivery, a simpler, wuser-ring facility is
provided.

The attribute data required by gcos_tss will be converted to
ASCII1 representation and saved as added names on the branch. The
gyeneral form of the attribute name 1is

<entryname>.,<attributename>.<attributevalue>

There 1S no problem with overlength namess GCOS file names
are Llimited to 12 characters in length, The added name
manipulation functions are isolated in one subroutine.,

gtss_attributes_mgr_» for easy conversion at a later date,

An exec_com will be provided to allow GCOS-oriented users to
manipulate these added names,

See the description of gtss_attributes_mgr_ for details of
the intertace.

DRAFT: MAY gE CHANGED -26- ' GTSS MTB 393

GCOS_SIMULATION WIIHIN_NMULILCS

EILE_SYSIEY

The following discussion applies to both the batch and the
time~-sharing simulators; although the interfaces are slightly
different, the functions are the same, References that are
simulator-specific are given as such,

The GCOS file system is not simulated. Instead, references
to permanent files from $ PRMFL or % SELECT control cards or from
MME GEFSYE are mapped by the batch Simulator into references to
files in the Multics file system.

The Multics file system has several Similarities to the GCOS
file system. Multics files are identified by pathnames, which
are analogous to the GCOS file string. They comprise a series of
directory names, which are analogous to GCOS <catalog nrames.,
followed by anmn entry namer, which is analogous to a GCOS file
name. Passworas are not included in a Multics pathname.

Multics literature uses the term '"segment"” when referring to
items containea in the Multics file system. The term "file" is
used in the special case of a segment that is being accessed by
explicitly programmed I/0 rather than via the normal Multics
method of direct-segment addressing.

References to permanent files can be made from the Simulator
via a Multics pathname or via a GCOS file string. The Multics
pathname can be used in place of the GC0S file string on the
$PRMFL card.

Each file has associated with it an access control Llist
(ACL), which 1is set by the owner of the file. The ACL can
specify combinations of read, write, and execute permissions to
individual users or to all users in a specific group.

Access to permanent files from the Simulator is determined
only by Multics access control and is based on:

1. The person.project of the process in which the
Simulator is running.

2. The access granted to that person.project by the ACL's
of the files being referenced.

DRAFT: MAY BE CHANGED -27- GTSS MTB 393

when the Simulator s running 1in an interactive wuser
processs access privileges to any permanent files are the
accesses granted to that person.project via the ACL's of the
referenced files. The presence or absence of a $ USERID control
card has no effect on this access. (The $ USERID card is ignored
by the Simulator.)

when the Simulator is running jobs submitted by the GCOS

daemon, there 1is a security problem. Normally, access to a
Multics process (and the file access privileges that it has) is
valicated by a password typed by the user at login time.

However, a G(COS password is contained on a $ USERID card and.,
therefore, 1is much more susceptible to theft. Thus, in addition
to the normal Multics file access controlss some additional
restrictions are placed on jobs submitted by the daemon to
protect the security of the Multics file system (see
"Restrictions on Daemon Jobs”" for descriptions).

MAEBING_ QFE_ELILE_SIBINGS_IQ_PAIDNAMES

dccause the structure of the Multics file system s
different from that of the GCOS file system, the appropriate
method of mapping a GCOS file string into a Multics pathname is
not an obvious one. The default method used allows many GCOS
jobs to run immediately and requires that some initialization be
performed in the Multics file system before other jobs can run.
Other methods can be specified that provide more flexibility and
completeness.

Both the GCOS and Multics file systems are organized in
tree-structured hierarchies. However, while the GC0S file system
holds only user files, the Multics file system holds the entire
Multics system; wuser files are held in a subdirectory of the
total hierarchy.

The user file subdirectory <contains project directories and
each ot these contains individual wuser directories, The user
file subdirectory is analoyous to the system master catalog (SMC)
of the GCUS file system. However, the project directories that
it contains are not analogous to the user master catalogs (UMC)
in the GCOS file systems since Multics users are not normally
permitted to create or modify files in the project directories.

User directories are more nearly analogous to the GCOS
UMC's, but they differ in that they have two-component names,
while UMC's have only one-component names, This makes it
impossible to map UMC names directly into wuser directory names
without obtaining additional information from some source or
making certain assumptions,

DRAFT: MAY BE CHANGED -28~- : GTSS MTB 393

The following discussion describes in detail how each
mapping method works.

A user directorys which is contained in a project directorxf
is known as a home directory or a default working directory 1n
Multics terminology. The form of a home directory pathname 1s:

>udd>project>person

The greater-than sign (>) is used to separate components of
a Multics pathname (instead of the slash (/) that is used in GCOS
file strings). The leading > indicates the pathname is relative
to the root of the hierarchy rather than relative to the working
directory. The directory udd (user_directory_directory) contains
all project directories. Every wuser's home directory is
contained in some project directory. For example, the home
directory pathname of the user Smith.Applications is:

>udd>Applications>Smith

User files can be placed in the home directory. Users also
can create subdirectories in the home directory and can place
files in them to organize and/or restrict access to groups of
files. Multics does not associate passwords with individual
directories or files; access is controlled onty by the ACL of the
directory or file in question.

Each process has a working directory. Initially, this
directory is the home directory of the user. However, it can be
changed by the user.

with Multics conventions: files can be referenced by an

absolute pathname or by a relative pathname, An absolute
pathname begins with a greater-than sign (>) and contains the
names of all the directories superior to the file 1in the

hierarchy. For example:
>udd>Applications>Smith>data_file
A relative pathname does not begin with a greater-than (>)
sign and the complete pathname is assumed to begin with the

pathname of the working directory. The simplest example of a

relative pathname is an entry name (analogous to a GCOS file
name):

data_file

DRAFT: MAY BE CHANGED -29- GTSS MTB 393

This identifies the same file as the previous example.,
provided the workinyg directory is:

>udd>Applications>Smith

Similarly, a GCOS catalog/file string that uses a leading
UMC name ‘can be considered to be an "absolute pathname” and a
file or catalog string that does not have a lLeading UMC name is
considered to be a "relative pathname”,

Multics absolute or relative pathnames <can be used on
$ PRMFL and 3 SELECT cards. They are interpreted as previously
described, If a 6GCOS file string is used on one of these cards
or in a MME GEFSYE, it 1s mapped into a Multics pathname.

Rules common to all mappings from GCOS to Multics follow:
1. ALl passwords, along with the dollar signs that precede
thems are removed from the string and ignored.
la AlL slashes (/) are changed to greater-than Signs (>).
3. 1t no catalog string precedes the final string, the
tfinal string is appended to the pathname for the user's
current working directory.
gempe_Rir_Megde
The first <catalog name in the string (that of the UMC) is
replaced by the home directory pathname (not the working
directory pathname).
Therefore, the file string
SMITH/JONESSCAT/Y$DOE
is transformed to the pathname
>udd>Applications>Smith>jones>y
tor the user Smith.Applications, Note that the retained portion

of the file string is indicated 1in Lower case letters, while tbe
original file string is indicated in all <capital letters., This

illustrates a common situation in which a file .string is
encountered on a BCD card that was used as input via the GCOS
daemon. (Alphabetic BCD characters are translated into lower

case ASCII characters for internal processing by the Simuléth.)
Howevers, if the dinput 1is a Multics ASCII file., thg or1g1nal
characters (upper or lower <case) in pathnames and file strings

DRAFT: MAY BE CHANGED -30- GTSS MTB 393

are preserved. A complete description of the use of the ASCII
and BCD characters sets is included in Section II.

Similarlys, if the file string were just

yYyy

and the user's current working directory were
>udd>Applications>Smith>smith, the resulting pathname would be
>udd>Applications>Smith>smith>yyy.,.

Problems that arise while mapping file strings into
pathnames (while accessing the files of another user) can be
solved in two ways:

1a Repunch the cards using Multics pathnames.
2 Place Links in the home directorys, which points to the

files of interest in the other user's directory. (See
the MPM manuals for information on this.,)

For upward compatibilitys the home_dir mode is the default
mode for both batch and time sharing simulators.

workipng Dir_Mede
This mode 1is nearly identical to the home dir mode. The

first catalog name in the string (that of the UMC) is replaced by
the the working directory pathname.

1f the user's working directory is
>udd>Applications>Smith>temp_dir, then the file string

SMITH/ JONESSCAT/YSDOE
is transformed to the pathname

>udd>Applications>Smith>temp_dir>jones>y

UMC_DRir_Mode

This mode of pathname mapping converts the leading UMC name
in the GCOS catalog/file string into the string
">udd>umc_name>umc_name"”. The purpose of this mode is to altow
direct mapping of pathnames in either direction with no explicit
action on the part of the individual user. This mode is used for
the loading of GCOS user SAVE tapes onto Multics.

DRAFT: MAY BE CHANGED -31- GTSS MTB 393

1t does reqgquire that the Multics System Administrator add
the lower-case version of the UMC name to the project directory
under >udd. The Project Administrator must create a directory by
the same name directly below the project directory. This second
directory is the wequivalent to the <catalog for the given UMC on
native 6GCOS.

tExample:

A project on GCOS has the UMC name of DEBUG. This project is
also reyistered on Multicsr, but with the name GDEBUG. The
following steps must be taken to wuse the UMC_dir_ mode of
pathname mapping:

1. add_name >udd>GDEBUG debuy
2. create_dir >udd>debug>debug
Se set_acl >udd>debug>debug sma *.GDEBUG

4, set_lacl_seg >udd>debug>debug rw *.GDEBUG

With this mode., the GCOS catalog/file string of
SMITH/JONESSCAT/YIDUE would be mapped to:

>udu>smith>smith>jones>y.

2MC_Rir_Mode

This mode of pathname mapping sets a directory pathname
specified by the user to be the SMC for all subsequent mappings.
ALL UMC's will be lLooked for or created directly under the SM(
girectory. Thus, the user has complete control over the mapping
of w6(CUS <cataloy/file strings to their targets on Multics,
Typically, the user will create Links with the names of UMCs that
point to the correspondiny directories containing the desired
subcatalogs and files. '

Example:
Tne user has specified "-set_smc_dir_mode >udd>GDEBUG" in a
command invocation of gcos_tss. With this mode, the GCOS
catalog/file string of SMITH/JONESSCAT/YSDOE is mapped to

>udd>GDEBUG>smith>jones>y.

DRAFT: MAY BE CHANGED -32- GTSS MTB 393

GISS _SYSIEM_EILES._DAIA_BASES

The following paragraphs describe the wvarious files and data
bases maintained by GTSS. Some of these are also directly
addressable by user software: for example, the system builds the

SY** file from the user's terminal input and then passes it to
the BSED subsystem for merging into *SRC.

o bound_gctos_tss_ gcos_tss, gtss

This module contains all executable modules, There are no
other bound modules for GTSS.

o gtss_ext_

This module <contains gtss per-process control information.

The gtss data base gtss_ext_ is a Multics object containing
entries (external variables) used to communicate information
from one gtss module to another, These variables are only

relevant to the GTSS implementation and would not be known
to @ user of gtss.

The include file gtss_ext_.incl.pl1 provides the centralized
declaration (PL/I) for these variables. There are a3 number

of structures ($flagse $statisticse $aft, $fast_Lib)
relating to particular GTSS functions. The remaining are
scalar wvariables used to regulate wunrelated functions,
There is comment information 1in the include file to

designate particular usage.

o) gtss_tfa_ext_

The file gtss_tfa_ext_.incl.pl1l contains the declaration of
the data structure, gtss_tfa_ext_, to provide an array of
file attrinpute structures. A row is provided for each of
the potential 20 files GCOS time-sharing allows. Each
structure (row) provides a set of values that designate the
"attributes”" of the corresponding file in the AFT,

The attributes (see gtss_file_attributes.incl.pl1) provide
information about a file's size, type of device, blocking,

whether random or sequential (lLinked), whether it is a

permanent file or temporary, and "user'" attributes provided
by the user of the file.

o} gtss_install _values_

This separate segment contains those runtime valués used by

DRAFT: MAY BE CHANGED -33~ GTSS MTB 32903

GTSS that may be changed by a site administrator,
Primarily, this data is wused to find the GCOS system
software. See below for a description of the maintenance of
this data.

(o] gtss_prgdes_ext_

The gytss_prgdes_ext_ data structure contains information
which is automatically extracted from the TSSA module of
native GCOS timesharing by the use of editor macros. The
information <consists of the program descriptors for
timesharing subsystemss, the command language lists for these
subsystems, and the lists of primitives to be interpreted
for each timesharing command. This information is wused
primarily by the gtss_interp_prim_ module of gtss. Section
IV of the TSS System Programmer's Reference Manual, DD 17C.,
REV O describes the functions of the program descriptors,
command language and primitives,

Data in gtss_prgdes_ext_ is Llogically equivalent to the
corresponding data structures in TSSA but the exact storage
tayout has not been maintained, For example, the program
descriptors have been expanded from 9 words to 12 although
the first 9 4ords still contain the information the user
would expect to obtain with a DRL PRGDES. This extension in
format 1s transparent to the user.

o gtss_ust_ext_

The ytss_ust_ext_ data structure represents the user status
tabte (YST) as maintained by native GCOS timesharing. AlL
of the same fields are defined as provided by native GCOS
and values are stored in the wuser status table in imitation
of native G(C0S timesharing. The wuser status table is
documented in Section I1 of the TSS Program Logic Manual
DBB84A, Rev U.

0 Sy*x, *xgrc, tapx*

GCOS allows the use of the asterisk 1in file names. Because
this conflicts with the Multics star convention wusage.,
asterisks are converted to the plus <character (t+) when
generating Multics entrynames.

These files are user-visible system files. They are fully
Jescribed in the GCOS TSS System Programmers' Manual, DD17.
Briefly, the syxx file is the collector file; it collects
the user's raw terminal input at system level. The *src
fite is the user's current file. It contains the old current
file data, merged with any new inputs. The tapx file is
used to collect bulk input from paper tape. Bulk input

DRAFT: MAY BE CHANGED =-34- GTSS MTB 393

refers to the reading of multiple tine input without Lline
breaks, with a sinyle read request.

o Command, subroutine Llibraries

This category refers to files supplied by the wuser in
addition to the system supplied procedures.

The wuser can specify that a certain command Llibrary be
searched with specific command syntax. In addition, GTSS
will search the file gcos_second_software_ if the -userlib
control arg is given in the gcos_tss command Lline.

o] gcos_system_software_
gcos_LlLibrary_subroutines_

These are the system supplied procedures. The files of
gcos_system_software_ are pre-lLinked slave programs such as
the FORTRAN compiler, the abacusS subsystem, etc. The files
of gcos_library_subroutines_ are the run=-time support
library routines. These two files are altso used by the batch
simulator and are taken from the GCOS release system tapes.

o} gtss_slave_area_seg_ (1-4)

This segment contains the executable GCOS object code. There
are actually four different segments wused to implement the
three-level subsystem push/pop facility. This effectively
accomplishes the GCOS TSS swap-out/swap-in mechanism,

DRAFT: MAY BE CHANGED -35- GTSS MTB 393

USEB_EILES

ALl filess, inctuding user files, are stored within the Multics

virtual memory storage system. Since GCOS users can only access
their files by doing "physical I/0" into their buffer space, the
simulator can make the physical differences in the two file

systems transparent to the user.

o} Normal GCOS "AFT" reference to files

GCOS TSS users must first (implicitly or explicitly) access
the files to be used and place the necessary control
information in the available file table (AFT) on a per-user
basis. The AFT is contained strictly within the GCOS TSS
executive's privileged spaces wusers cannot directly address
this information with their programs,

The GT7SS interface 1is identical to that of native GCOS
provided that the permissions requested are only read,
write, execute, and append. The other forms of access
provided by native GC0S, such as <conflict control and file
recovery, are not provided.

0 Cataloy designation mapped to Multics pathname

See below for a comprehensive description of the pathname
mapping facilities.

o 6TSS files are identical in content to those on GCOS

As mentioned earltier, 1t is a primary goal to store the GCOS
file <content in g3 format completely identical to that of
native GCOS., This eliminates all possibility that the data
read and written will not conform to what is intended. This
caution is based on the fact that any files, regardless of
how it is created and filled with data, can be accessed
randomly., in I/0 records of any Llength. The 1initial word
address being mod 64 is incidental.,

) 6TSS files can be referenced by user Multics software

It is planned to provide an [/0 module 1interface so that
Multics proyrams <can easily access GCOS-format data bases.
It is easy to write procedures that process these files; the
gcos_card_utility command already does this.

DRAFT: MAY HE CHANGED -36- GTSS MTB 393

GI3S_ERRQB_BBOCESSING

There are three Llevels of error processing that should be
addressed: it is planned to take advantage of the Multics system
features to make error reporting more comprehensive than is
available on native G(COS.

0 Errors found by slave object code

These errors are detected only by GCOS software and thus
must be reported as-is. Error messages that are specified by

number to the executive are identical to that produced on
native GCOS.

0 Errors found by GTSS simulator

Since the simulator performs services on behalf of the GCOS
object programs, errors detected can be reported to the
interactive user before returning to the GCOS procedures.
This provides the user with the opportunity to correct the
situation and continue execution rather than aborting the
function,

o Errors found by Multics
Errors first detected by the Multics operating system will

be reported back to GTSS. GTSS can then attempt correction
of the situation as before,

DRAFT: MAY BE CHANGED -37- GTSS MTB 393

SISS_PEREQBMANLE

[his section attempts to provide a preliminary insight of GTSS
performance. There has been no exhaustive analysis prior to the
start of implementation to determine what the GTSS performance
would be;, however, past experience can give some justification to
this insight,

The reader is reminded that GTSS is not intended to be equal in
pertormance to native GCOS TSS. The implementation as a user-ring
facility, subject to all the normal user interfacess. precludes
total optimization of the 1interfaces. Within these constraints.,
however, every effort will be made to be as efficient as is
reasonably possible,

0 Direct execution of user and slave system software

Since the Multics CPU 1s essentially a superset of the GCOS
CPU, even when running in Multics mode, direct execution of
the sCUS object <code is wusSed. Thus, only the additional
address formation time for the virtual memory need be
considered. Multics derives some benefit from a more
selective cache control.

o) simitar processing of derail "faults" by the operating
systems

Both systems intercept faults in the same manner; Multics is
required to store and restore certain additional register
information.

o] Efficient file, terminal I/0

The batch simulator wuses 50~100% more CPU time in the
servicing of user I1/0 requests than native GCOS. For this
reasons an new 1/0 mechanism is wused, tailored to the
interfaces of the batch MME GEINOS and TSS DRL DIO. This
new mechanism uSesS a sSubroutine 1interface rather than a
Multics I/0 module interface, and 1is expected to give a
considerable improvement in performance over the old
mechanism,.

0 Optimized PL/I very efficient

The entire simulator is written in PL/I, with the exception
of a very few Lines of ALM code for BCD/ASCII translation

VRAFT: MAY Bt CHANGED -338- GTSS MTB 393

and the transferring of CPU control to the GCOS object
programs (Transfer and Set Slave). This provides for ea;ity
optimized code, both in the optimize feature of the compiler
and the profile monitoring facilities.

Simultaneous, multi-processor execution of GTSS

Since GTSS runs in a normal user process, it can be run on
any and all processors simultaneously. Multics provides
somewhat better processor wutilization than GCOS: one reason
is that any Multics CPU can answer any interrupt.

Virtual memory file processing

Since only the busy pages stay in core, there will be some
efficiency in main-memory utilization. If programs are
written to run on GCOS but only the simulator on Multicse.
more efficiencies can be gained by assuming program sizes up
to 255K (less the space for the Lloaders) do not require
overlay processing. This has been wused to advantage in the
batch simulator by programs that use the free space provided
to the program with the $LIMITS card.

Terminal type-ahead

This Multics feature is wusable under GTSS. As with normal

Multics userss, this feature is most useful with full duplex
terminals,.

Extensive metering and tuning facilities

GTSS can take advantage of all Multics tools for performance
measurement and enhancement.

System Scheduler

The Multics system scheduler can be wused to provide
guarenteed and <controlled responses to individual users or
groups of users.

Paging Consideration

It is possible that certain I1/0 on natijve GCOS that is

DRAFT: MAY BE CHANGED -39~ GTSS MTB 393

overlapped with program execution (asynchronous I/0) may be
done in a synchronous mode on Multics. This is necessary to

ensure that the page containing the physical I/0 buffer is
in main memory.

DRAFT: MAY BE CHANGED =40~ GTSS MTB 393

JRANSITIQON_IQQLS
In addition to the gcos_tss cOmmand itself, other commands are

provided to facilitate the movement of programs and data between
GC0OS and Multics.

batch_Simulatac
The batch simulator complements GTSS in its functions. Most slave

user functions are available, The current MME and control card

level of the batch simulator is 2/H. An wupgrade to 3/1 and then
4/J is in process,

Files not created by GT7SS, but intended for use by GTSS, must
have their file attributes defined with added names on the

branch. An exec_com is provided for the wuser to manually set
these attributes until all GCOS tools provide this function.

Multics_facilities

Many additional tools already exist in Multics that can assist in
GCOS and GCOS TSS program development. The GCOS-related tools
are listed immediately velow.

1) gcos_card_utility

2) gcos_pull_tapefile

3) gtss_Llibrary_mgr (glom)

4) gcos_fms Save/Restore Utility

5) I/0 modules for direct access of GCOS files and tapes by
Multics Programs (in planning)

DRAFT: MAY BE CHANGED -41~ GTSS MTg 393

COUUAND _ANR_SUBRQUIINE_RESCRIBILIONS

The following payes describe the various commands related to the
bC0S TSS Simulator and some of the more definitive subroutines,
The following modules are included:

GCOS_TSS

gcos_debuy

gcos_fms (described in a separate MTB)
gcos_LlLibrary_mgr (glom)

gtss_attributes_mgr_
gtss_expand_pathname_

DRAFT: MAY BE CHANGED -42- GTSS MTB 393

gcos_tss
Name: gcos_tsss, gtss
The gcos_tss command

simulator to run a
user's process.

single

Usage

gcos_tss {-control_args)

where control_args can be

-gtss_umc umc_name
set an internal
This value
functions.

If this
either
control

the

is required

option and

invokes
GCOS TSS

parameter for UMC
for certain

its

argument are
-set_smc_dir_mode or

arguments are givenes

environment
in the

the
useres

GCOS TSS
immediately.,

selected from the following:

name to umc_name,
implicit GCOS TSS

not given when
-set_umc_dir_mode
gcos_tss will reqguest

the umc_name before continuing.

-set_multics_break_mode,

sets a mode in
to go the
hits the

Multics
break/interrupt key on the

=-smbm
gcos_tss to cause
command

the user's process
whenever the user
terminal. The

level

user can then type any number of Multics commands for

immediate execution. Execution of gcos_tss can be
resumed by typing "start".
1f the user types "program_interrupt” ("pi") after

quitting GTSS.,

gcos_tss will
current TSS command/subsystem as

reset execution of the
in native GCOS TSS.

Control arguments specifying the disposition of output from
the simulator:
-lists -Ls
convert APRINT and BPRINT print files (both are
SYSouUT) from GCOS ASCII and BCD., respectively, to

Multics ASCII and delete the

intermediate copy but do

not submit the dprint request for these files, (This

conversion is performed by a call to the
gcos_sysprint command for each file,)
-~dprint_options "options'", ~dpo "options"™

queue the converted print files for

printing by the 1/0 daemon, but wuse the dprint

DRAFT: MAY BE CHANGED 43 09720778 GTSS MT3 393

“raw

control arguments supplied in the options string
instead of the default of =delete. The options must
be enclosed in quotation marks if they contain blanks
or other delimiter <characters recognized by the
command processor. The dprint command is called via
cu_$cp so that a user~-defined abbreviation for dprint
(that supplies default heading and destination
arguments, for example) would be wused in this call.
Use of this control_arg overrides the wuse of the
-list and ~hold control_args.

convert BPUNCH punch files from BCD to an internal
format suitable for punching by the Multics 1/0
daemon 1in raw mode (960 bits per card image) and
delete the BCD copys but do not submit the dpunch
request for these files. (This <c¢onversion 1is
performed by a call to the gcos_syspunch command for
each file.)

~dpunch_options "options", =-dpno "options"

gueue the converted punch files for
punching by the 1/0 daemones but wuse the dpunch
control arguments supplied in the options string.
The =-raw argument is always used for dpunch, since
the <converted punch files are not suitable for
punching in any other mode. The explanations under
~dprint_options above, regarding quotation marks and
abbreviations, apply to this argument as well. Use
of this control_arg overrides the use of the -raw and
-hold control_args.

~hold, =-hd

Controt

do not perform the default conversion and daemon
output of print and punch files. The default 1is:

~dpo "-dL" -dpno "=~dl =-raw"

Since the default for each file type (print or punch)
is overridden when any of the above arguments are
specified for the given file types, the ~hold argument
is only required when one of the file types is to be
left in GCOS standard system format, with no
conversion or daemon output being performed.

arguments governing the <creation of files by the
simulator:

DRAFT: MAY HBE CHANGED 44 09/20/78 GTSS MTB 393

-temp_dir path, -td path .
use the pathname of a directory specified by

path for

temporary GCOS TSS files., By default, the process

directory is used.

-syot_dir path, -sd path
use the pathname of a directory specified by

path for

the GCOS TSS format copies of prints, punch, and
sysout files. By defaults, the working directory 1is

used. (The converted copies of these
atlways placed in the working directory.)

-set_smc_dir_mode path, -ssdm path
-set_umc_dir_mode, -sudm
~set_working_dir_mode, =-swdm
~-set_home_dir_modes =-shdm
-reset_dir_mode, -rsdm

files are

Refer to "Mapping of File Strings to Pathnames" in

Section 1 for a description of these
arguments,

Other control arguments:

-userlip
enable the wuse of GCOS slave software

control

Libraries

supplied by the user instead of, or in addition to.,
the copies of the Libraries installed in the system.
The use of this argument is described in Section 1II

under "DATA BASES",

-debug, -db
-probe, -pb

inform the simulator that: 1) it is being run

interactively, 2) by a wuser who is familiar

with the

Multics debug or probe command, respectively, and
other Multics error recovery facilities, and 3) the
user wishes to be given the opportunity to use the

facilities to determine the cause ofs, and

possibly

correcte any error that would otherwise cause the

simulation of the job to be aborted.

-trace args

trace the events specified by args, where args can be

one or more of the following:

derail, drli., causes the derail name

and its

location in the &execution program to be written

to the user-output switch,

DRAFT: MAY BE CHANGED 45 09720778 GTSS MTB 393

DRAFT:

subsystems SSo causes the name of the <called
subsystem to be written to the wuser_output
switch.

-gcos_debuygs, —-gdb path

where pathname specifies the Multics segment to be
used for the gcos_debug command data base. If the
entryname of path does not have the suffix gdb, it
will be appended.

See the description of the gcos_debug command earlier
in this manual for a definition of the gcos_debug
control syntax and functions.

MAY BE CHANGED 46 09/20/78 GTSS MTB 393

- - - - e = -

Name: gcos_Llibrary_mgr, glm

The glom command "obtains"” modules from a GCOS library segment
(commonally a multi-segment file). Modules may be extracted fron
the library to form a fast search library and (or) a segment
containing information about the location of GCOS objects on the
library, or the library extracted ontos (in terms of Multics msf
component numbers and segment offsets) can be obtained.

Syntax: glom in_lib {=-nm module_name ...} {-ol out_Llib}
{-cf names_seg} {-no_cat) {-pr_cat)}
{-olli olli_path) {~brief}

Arguments:

in_Llib Name of segment or multi-segment file input library.
This file <can be copied from a GCOS total system tapes or it
might be a simutator format Llibrary commencing with a catalog as
produced by the gcos_build_Llibrary (gcbl) command. It is assumed

to begin with a catalog wunless the =-no_cat control argument is
given,

Control Arguments:

-nm module_name is an library object name (<= 6 characters)
specifying the modules to be obtained. This List of names is
catenated with names supplied in the names_seg (see -cf control
argument), If no names are supplied by =either option then all
modules on the library is implied.

-ol out_Llib designates that the modules are to be catenated
to the named segment or multi-segment file. If this file does
not exist it witl be created. out_Llib can be a full pathname.

-cf name_seg 1is @ Multics segment <containing a list of
module names (Note: module_name option above). This segment must
(only) contain one name on each line, no white space and no empty
lines. This segment can be formed by executing
gcos_Library_summary (gcls) or glom (itsel f) under the
file_output (fo) command and editing the report produced.

-no_cat Designates that the input library does not commence
with a catalog.

-pr_cat Print input library <catalog information (names and
Locations). No catalog will be printed if the calter specifies
both =pr_cat and -no_cat. If =-brief is specified along with

DRAFT: MAY BE CHANGED 47 09/20/78 GTSS MTH 393

-pr_cat and there 1S no output library nor and module names
specified (either in the command Line or in any =cf file)
printing the catatog will be the only activity of glom,

-olti olli_path is the name of the file that the output
Library List of information is put into. This file will be
overwritten if it already exists. This file is printabtle

information designating each module placed on the output library.,
in which multi~segment component it was placed, the offset to the
object and information provided for the gtss fast library loading
process.

~brief, =bf Do not report each module moved to any output library
(on error_output).

Notes: The glom command incorporates functions of the
gcos_Llibrary_summary and gcos_extract_module commands. The glom
command wusSes the msf_manager_ subroutine to manage its files
rather than jos_ used by the latter two.

DRAFT: MAY BE CHANGED 48 09720778 GTSS MTB 393

Name: gcos_debud, gdb

This Multics command provides for a debugger to be used
in conjunction with the GC0S simulator (See: help
gcos).

Introduction: '"gdb" is an online debugger to work specifically
for callers of the Multics GCOS simulator
The gcos simulator, i.e,, the "gcos" command,
calls upon gdb when failure occurs. The wuser then
types in a series of instructions to direct the
debugging activity. Upon termination (the gdb '"quit"
command) the simulator <concludes its execution,., gdb
"knows" the segment used by the simulator to simulate
gcos memory. In addition gdb "knows'" how file control
blocks and (GCOS Version 1) PL/I automatic stack frames are
linked together in the simulated memory.

Calling gdb: The Multics '"gcos" <command provides for the
"-debuy" (or "-db") control argument. When the GCOS
simulator, i.e.», the "gcos" command, is called wusing
this argument AND there 1is failure in execution the
simulator calls the procedure "db"™. Normally caltting a
procedure "db" would result in the. Multics -"debug"
being called. Anticipating this circumstance the gcos
debugger, "gdp'" (also with entry "db") can be called
instead.

To provide for calling gdb the following steps should
be taken: BEFORE calling "gcos" (and providing that it
is called with the "-debug” or "-db" option), terminate
any reference to "db":

tmr db

then initiate the gcos debugger:
initiate >udd>Gcos>gdb>db

then execute "gcos —-debug ...". Note that the
terminate, "tmr", 1is only required if a reference to
"db" has been set previous to the gcos debugger being
called. The initiation of "db" in gdb is only needed
once during each Multics '"process", i.e.r, Once "db" s
initiated "gcos" can be called many times.

DRAFT: MAY BE CHANGED 49 09720778 GTSS MTB 393

using gdb:

gcos_debug

The caller of '"gcos” is signalled that the debugger is
about to be called by the sequence:

CALLING DEBUG:

output on the terminal. At this point the gcos
debugger awaits the wuser typing instructions to be
carried out. Typing "?" will cause a "help" session.

It s also possible to call gdb directly as a Multics
command (at either its "gdb" or "db"™ entry, they are
the same). In this case the process directory segment
used to simulate gcos memory must be "viable", i.e..»
the simulator must be 1in the process of execution,
This will be the case if the execution of 'gcos" s
interrupted or if it does not conclude normally and NO
"new_proc" has been executed.

Once ygdb (entry db) has been called by the gcos
simulator (as described above), gdb expects the user to
supply instructions to be done. The user types the
instructions at his terminal, The instructions are
typed in a free format. They are separated from each
other by semicolons ("?") or newlines ("return" key).
Each instruction is in one of three forms:

1. an address followed by a command.,

2. Just a commands, oOr

3. jJust an address.

In case ¢2 the <command either requires no address or

utilizes the last address specified. Case 3, just an

address defaults the command to being the octal dump,.

Commands fall (loosely) into three categories:

1« requests for information about the current state of
the execution of the gcos simulator, i.e.»
information about the user's programs under
simulation, '

2. requests for information about the state of the gcos

“debugyger., and
3. escaping to call wupon facilities outside of the

debugger (escape to Multics command level) without
exiting from the debugger (or the simulator).

1f commands are typed that are unknown to gdb (spelling
mistakes, whatever) the user is requested to supply a
substitute word. In addition the caller can always
interrupt gdb (depress the "interrupt” or "break" key)
and then type "pi" ("program_interrupt”). These two
steps will place the <caller back 1in gdb ready for
another instruction.

DRAFT: MAY BE CHANGED 50 09/720/78 GTSS MTB 393

Addresses:

Commands:

-—— e o o - - -

To provide assurance that the GCUS debugger is in use
when an input Lline contains only a back=-slash gquestion
mark ("\?")) the message '"gcos_debugger" is printed.

For various gdb commands the user must indicate to
what series of gcos memory words they are to be
applieds €.4g.r

0,100 bcd

designates displaying memory Llocations from octal ()
through octal 100 as bcd character values.

Addresses are in one of 3 formats:

1. first address followed by a comma followed by a last
addresses

2. first address followed by a <colon followed the
number ot words., and

3. just a first address.

In the last case (3.) the first and last address are

the same. The first and/or last address are in the

form of optionally signed "expressions”. In case 2..»

the number of words 1is an unsigned expression., The

simplest form of expression is a numeric constant. If

the number ends with a period (".") a decimal number is

specifieds otherwise the number is an octal number.

An expression can be a single "value" or a series of
"values" operated upoOn by the operators: +, =, *
(multiply)s, / (divide), or | (modulo). A "value" can
also be parenthesized expression. As was stated the
simplest form of "value" is a decimal or octal number
constant, A "value" can also be whatever is contained
in a specified register, e.g.r x3 as a "value" imolies
using the <contents of dindex register "x3", The "a"
and/or "g" register can be specified or the contents of
either of these two register's upper or lower half.,
e.g.» a U 1implies wuse the upper (left) half of the
contents of the "a'" register as a value.

The address expression value is always biased by (added
to) a current "offset" value. The offset is initially
zero and it can be set by the "offset" command.

The following is a description by command., Note that
any command may be preceded by an '"address'. In some
casess €eQauvrs the escape command, the address
information is not useds, though it does reset the

DRAFT: MAY BE CHANGED 51 09/20/78 GTSS MTB 393

current default address values. No comment is made if
the address was not required. The command keywords
usually have 3 forms:

1. a single letter.,

2. a 3 character mnemonic¢c and

3., a "lonyg" forms, e.g.r, "d", "dec" and "decimal".

The "? commands'" prints a table of commands.

escdpe: (e | esc | escape) Followed by one or more spaces (or
tabs) results in the remainder of the Line being sent
to the Multics command processor (through the

abbreviations).

ascii: (asc | ascii) Print selected memory words as &4 ascii
characters apiece.

ocd: (b | bcd) Print selected memory words as 6 "becd”
characters apiece.

decimal: (d | dec | decimal) Print selected memory words as
decimal numbers.

tcb: (tcb) Print memory selected by the first address as a
file control block (at its zero-th entry).

float: (f 1 flt | float) Print selected memory words as
floating point numbers. :

huh: (huh) Display various debuyger <control values, e.g..
current first and last address values.

instruction: (i | ins | instruction) INOT IMPLEMENTED]
Print selected memory locations in assembly language
mnemonics.

List file control blocks: (Lfs | list_fcbs) Starting from
memory Llocation (octal) 17 trace the linked list of
current file control blocks.

LRAFT: MAY BE CHANGED 52 09/20/78 GTSS MTB 393

tist PL/1 stack frames: (Lss | Llist_stacks) Starting from
memory Location (octal) 37 trace the linked list of
PL/1 (automatic storage) stack frames. Note: gdb is

currently oriented only to the Toshiba PL/1 compilers
implementation of stack frames, this is not <compatible
with the GCOS PL/2 utilization.

Lower: (L t Low | Lower) Gualify that the "lower" (right 18
bits) part of the "a"™ or "q" register contents are to
be used,

no operation: (n | nop) "Do nothing" debugger command.
Provides for resetting the <current address values

without designating any overt action.

octal: (o J oct | octal) Print selected memory words in octal

(12 octal digits apiece). Note that octal is the
default command.

offset: (off | offset) Reset the address offset to the value of
the first address.

pointer: (p | ptr | pointer) Print selected memory words as PL/1
"pointer" values,

prefix: (pre | prefix) Print information from the SSA prefix,

quit: (git | quit) Exit (return) from the gcos debugger.
After this command 1is executed the remainder of the
GCOS simulator execution will proceed,

registers: (reg | regs | registers) Print the contents
(in octal) of all register contents.

stack: (stk | stack) Print memory selected by the first
address as a PL/1 (Toshiba) stack frame.

upper: (u | upr | upper) Qualify that the upper half (left 18
bits) of the "a" or "q" register contents is to be used
as the value,

DRAFT: MAY BE CHANGED 53 09/20/78 GTSS MTB 393

helps: (?) Typing a question mark as a command ("?") calls the

fiultics "help'" command with the info file for gdb. If

the question mark is followed by one or more space
delimited keywords then the help is called for those

specific entries. Responding with "quit" or "no" to a

help regquest returns you to the debugger. Remember.,

that if in doubt you can always interrupt and type "pi"

to return to debugger command level.

DRAFT: MAY BE CHANGED 54 09/7/20/78 GTSS MTB 393

Name: gtss_attributes_mgr_

| This subroutine is wused to maintain a subset of the G(COS
file attributes for files used by the GCOS environment
simulators. It does this by using added names on the branch entry

to save each of the required attributes, See below for a list of
the attributes accommodated and the specific formats involved.

Entrcy: gtss_attributes_mgr_%$set

This entrypoint is uSed to set initial attribute values and
also modify existing attributes,
Usage

dcl gtss_attributes_mgr_%$set entry (ptrs, fixed bin (35)):

call gtss_attributes_mgr_%$set (attrib_struc_ptr, code)’

where:
/ 1. attrib_struc_ptr (Input)
points to the control structure to be used for
setting and resetting the attributes. See below for
the structure declaration.
2. code (Qutput)
is a standard status return or a gcos_et_ error
return,
Noles
None.
Eptry: gtss_attributes_mgr_%get
This entrypoint is called to obtain existing GCOS attribute
information about a file.

DRAFT: MAY BE CHANGED 55 09/20/78 GTSS MTB3 393

decl gtss_attributes_mgr_%get entry (ptr, fixed bin (35)),

call gtss_attributes_mgr_%$get (attrib_struc_ptrs, code)’

where:
1. attrib_struc_ptr (Input)
is as described above.
. code (Output)
1s as Jdescribed above.
NQgles
None,

Attripbutes_Structure_Peclaration

/* BEGIN INCLUVDE FILE gtss_file_values.incl.pl?
(wardd Multics) 08/730/78 1208.1 mst wed =*/

/+« The gtss_file_values structure provides parameters to the
gtss_attributes_mgr_ subroutine,

The caller must provide space for this structure, fill in
the version with 1, the dname and ename with the file directory
and entry namer and for calls to gtss_attributes_mgr_%$set,
fill in values to be reset and set the corresponding set_switch

to "1"b.
«/
del attr_name (0z25) char(4) static int
options(constant)
init("mode","maxl","curl”,"busy","attr","null")’
del 1 gtss_file_values altigned based(file_values_ptr)
’ 5 version fixed bin(17)
/* Current version is 1. */
’ 3 dname char(168)
/* Directory name., */
’ 5 ename char(32)
/* Entry name, */
, 3 set_switch
/* "1"p => Set corresponding value,., =/
’ 4 set_ransegq bit(1unal

/+ 0, Set the random/sequential(linked) field., */

DRAFT: MAY BE CHANGED 56 09/720/78 GTSS MTB 393

’ 4 set_max bit(1T)unal
/* 1. Set max size value. */

, 4 set_current bit(1Yunal
/* 2, Set current size value., */

, 4 set_busy bit(1unal
/* 3, Set file as busy. */

’ 4 set_attr bit(1)unal
/* 4, Set user attributes value, */

’ 4 set_nutl bit(1dunal
/* 5. Set null file value. =/

’ 4 not_in_use bit(30)unal

/* The above set_ variables should be declared in an order

corresponding to the value in the attr_name array.

-

3 data_flags

’ 4 mode_random bit(1Tdunal
/* "1"b => random. */
, 4 busy bit(1)unal
/* "1"b => file is busy. */
’ 4 not_null_file bit(1)unal
/* "1"b => file NOT null., »/
4 not_in_use? bit(33)unal
3 data_fields
4 curll fixed bin(35)
/I* Current length in Ltlinks (>=0). */
’ 4 maxtdi fixed bin(35)

/* Maximum length in Llinks (>=0), */
’ 3 attributes

4 not_in_use3 bit(1)unal
4 attr bit(35)unal
/* User specified file attribute value. */

N,

/* END INCLUDE FILE gtss_file_values.incl.plt1l */

DRAFT: MAY BE CHANGED 57 09/20/78

*/

GTSS MT8 393

Name: gytss_expand_pathname_

This subroutine is used to map GCOS-format catalog/file
strinys into their corresponding Multics pathnames. Various
alyorithms are used, depending on the current mode setting. The
default mode is the home_dir mode. The default mode may be
restored with the reset_mode entrypoint,

Usage

dcl ytss_expand_pathname_ entry (ptr, fixed bins, char (*),
char (%), fixed bin (35)):

call gtss_expand_pathname_%$gtss_expand_pathname_
(ascii_name_struc_ptrs, name_count, dname, ename, code)’

where:

1. ascii_name_struc_ptr (Input)
is a pointer to the structure that contains the eight
ASCII character strings that specify the GCOS
catalog/file path to be mapped into the corresponding
Multics pathname.

. name_count
is the number of names in the structure that are
actually used.

3. dname (Qutput)
is the directory portion of the resulting Multics
pathname.

4. ename (Qutput)
is the entryname portion of the resulting Multics
pathname.

5. code (CQutput)
is a standarid status return or a gcos_et_ Sstatus
return,

NoLes

The Multics pathname generated from the GCOS catalog/file
string is dependent on the current mode setting for the
procedure., See below for a discussion

DRAFT: MAY BE CHANGED 58 09/720/78 GTSS MTB 393

Eptry: gtss_expand_pathname_$set_home_dir_mode

This entrypoint sets the home_dir mode. A GCOS catalog/file
string that does not begin with a UMC name will be mapped to the

user's current working directory. A catalog/file string that
does begin with a UMC name will be mapped to a Multics pathngme
where the UM(C name s replaced by >udd>Project_id>Person_1d.,

where Project_id and Person_id are the user's login Person_id and
Project_id.
LUsage

dcl gtss_expand_pathname_%$set_home_dir_mode entry
(fixed bin (35));

call gtss_expand_pathname_$set_home_dir_mode (code)’

where:

code (Qutput)
is the same as above.

Notes

See the table below for examples of pathname mappings using
the various modes.

Eptey: gtss_expand_pathname_$set_working_dir_mode

This entrypoint sets the working_dir mode. A GCOS
catalog/file string that does not begin with a UMC name will be
mapped to the user's current working directory. A catalog/file
string that does begin with a UMC name will be mapped to a
Multics pathname where the UMC name is replaced by the path for
the user's current working directory.

Usage

det gtss_expand_pathname_S%$set_working_dir_mode entry
(fixed bin (35)):

call gtss_expand_pathname_%set_working_dir_mode (code);

where:

DRAFT: MAY BE CHANGED 59 09720778 GTSS MTB 393

code (Output)
is the same as above.

Notes

See the table below for examples of pathname mappings using
the various modes,

Eptry: gtss_expand_pathname_3$set_smc_dir_mode

This entrypoint sets the smc_dir mode, A GCOS catalog/file
string that does not begin with a UMC name will be mapped to the
user's current working directory. A catalog/file string that
does begin with a UMC name will be mapped to a Multics pathname
where the SMC directory path is prepended to the catalog/file
strings, including the UMC name,

ysage

dcl gtss_expand_pathname_3$set_smc_dir_mode entry {(char (%), “N
fixed bin (35)),

call ytss_expand_pathname_3%set_smc.dir_mode (smc_Path,

code).
where:
1. smc_path (Input)
is the Mmultics directory pathname to be used as the
SMC (root) catalog.
l. code (Output)
is the same as above,
Notes

See the table below for examples of pathname mappings using
the various modes.

UVRAFT: MAY BE CHANGED 60 09/20/78 GTSS MTB 393

- D G R WS - - - —— - - - G g -

Eotry: gtss_expand_pathname_%$set_umc_dir_mode

This entrypoint sets the umc_dir mode. A GCOS catalog/file
string that does not begin with a UMC name will be mapped to the
user's current working directory. A catalog/file string that
does begin with a UMC name will be mapped to a Multics pathname
where the UMC name is replaced by >udd>umc_named>umc_name. The
umc_name is in lowercase.

Usage

dcl gtss_expand_pathname_%$set_umc_dir_mode entry
(fixed bin (35)):

call gtss_expand_pathname_%$set_umc_dir_mode (code).

where:

code : (Output)
is the same as above.

Noies

See the table below for examples of pathname mappings using
the various modes.

Eptry: gtss_expand_pathname_S$Sreset_mode

This entrypoint causes the mapping mode to be reset to the
default mode. The default mode is the home_dir mode,
Usage

dcl gtss_expand_pathname_$reset_mode entry
(tfixed bin (35));

call gtss_expand_pathname_3%reset_mode (code)’

where:

code (Qutput)
is the same as above.

DRAFT: MAY BE CHANGED 61 09/20/78 GTSS MTB 393

The gcos_tss (gtss) facility provides a data base of values
sensitive to each installation of gtss. These values are kept in
the Multics object segment "gtss_install_values_" (referenced as
unbound external wvariables, gtss_install_values_%$varb). This
object is created by calling the Multics command
create_data_segment (cds). The source gtss_install_values.cds is
provided for this call, The include file,
gtss_install_values_.incl.plt1, contains a data structure
declaration whose initialization values designate the current set
of installation values. To provide a change in these values the
following steps are taken:

1. Change any existing initialization wvalues appropriate in the
seyment
gtss_install_values_.incl.pll.

2) Execute the Multics command:
create_data_segment gtss_install_values_ -Llist

Note that new variables can not be 1introduced 1into the the
gtss_install_values_ structure (this implies new facilities that
must be coded into gtss)es nor can the attributes be changed. The
order of the level 2 variables can be changed.

Tne GTSS implementation utilizes the declarations in the segment
gtss_install_values_.incl.pl1 for access to the actual external
variables in the object at runtime.

The object produced from the <create_data_segment execution must
vpe "found" when gtss is executed (i.e.» it is not bound into

gtss)., This is wuswuwally accomplished by ensuring the object
segment is in the same directory as gtssa. With
gtss_install_values_ not bound into gtss» there is the
opportunity for many versions to be available. The version

desired can be initiated before gtss is called and terminated
with the corresponding Multics commands.

The cds execution will produce the segment
gtss_install_values_.lists, reflecting the «c¢ds execution, This
segment can be dprinted to provide a record of the alteration of
the installation values. The execution will reflect if the data
structure for gtss_install_values_ is acceptable., Either PL/I
Syntax errors will be reflected (on the error_output switch) or a
message indicating the number of words in the object data
structure (on the uSer_output switch).

LRAFT: MAY BE CHANGED 62 09/720/78 GTSS MTB 393

APPENDIX A

BELL CANADA SPECIFIC REQUIREMENTS

The following <(edited) text is from Sandy Bartlett of Bell
Canada. It is not an official memorandum but it does contain
certain requirements as seen by one of the system programmers at
Bell. It is included here to indicate the level of compatibility
that is desired by at least some of the users of native GCOS TSS.

Note that the MTB states that item one is not planned. Also, GTSS
will always return to Multics command Llevel when the user types
BYEI

1. The GCO0S erase kill proposed will not meet our needs. In
fact we feel 4t would cause <confusion as the Lline kill
character is a non-printable character whereas on Multics
you can See it! We feel that if this approach were used it
would be better to use standard Multics erase kill.

For this reason we will require the standard GCOS erase
character "aQ" to erase only the preceding character and the
standard GCOS kill Lline ctrl*x' to be treated as a carriage
return and followed by a "DEL carriage return-line feed".

We feel that the erase could probably be fairly easily
handled 1in a tty_ module and the kill should not be
difficult to implement in the fnp (maybe as an extra option
to set_tty such as delecho). Even with these changes
type~ahead will probably still be possible.

2. Papertape should be simple to 1implement. There are two
modes Of papertape inputes file and command.

To input a papertape file the user types TAPE and the sysStem
responds with READY followed by "carriage-return, line-feed.,
x-on". The user's tape will then start and continue until
it transmits "x=-off" which will terminate the file input
mode. The actual input will consist of Llines of data
terminated by "carriage-return line-feed". Data lines will
possibly be preceded by rubouts which are ignored.

DRAFT: MAY BE CHANGED A-1 09/720/78 GTSS MTB 393

To input commands from papertape the system must have "x=-on"
as the Llast prompt character (GCOS prompts with
"carriage-return, line-feeds asterisks, x=-on"). This could
be done simply with the general_ready command for command
mode . ORL KOUTN could add "x-on" to the output text so
programs could receive their input from papertape also.
tach Line of the user's tape would consist of data followed
by "carriage-return x-off" possibly followed by rubouts
which are ignored.

File system permissions reguired are reads, execute, and
write for files as append is not 1implemented under GCOS.
GCO0S catatoy permissions CREATE, PURGE, and MODIFY should
map to Multics append, modify~append., and
status-modify-append, respectively.

we use all access permissions except TEST and RECOVERY
(APPEND results in RW). We do not use GCOS permissions
RECOVERY or LOCK and we do not allow DEVICE specification.
We do not use ABORT, VERIFY, AUDIT., INCRSAVE, PAGESIZE,
RDERR, and ACCESS/RWW/ or ACCESS/MONITOR/.

We allow ACCESS/CONCURRENT/ which 1is really only a flag
indicating that the file can be opened with multiple writers
and readers, Concurrent access is handled entirely by the
program. The file is <created with this attribute and is
nandled normally except when accessed with CHANGING
permission in which case multiple writers and readers are
allowed. A file accessed with WRITE permission MUST NOT be
available to anyone else (i.e. a file can have many readers
and no writers or only one writer and no readers [excluding
the writer] unless CONCURRENT and CHANGING are used).

Wwe will require the full CARDIN system but on a lower
priority than FORTRAN and BASIC. We will not require system
ALGOL, JOVIAL, or DATABASIC as we do not use them. We also
do not use any database managers (e.g. IDSQ).

A separate GTSS logon would not be required if all users of
GTSS were logged on the same project. For this purpose
Multics logon would suffice. ALl Person_ids registered on
this common project would be synonymous with the GCOS user
master catalog (UMC). The GCOS simulator should be changed
to reflect the GTSS file mapping.

we feel that a G6GTSS logon facility would be useful for an
inentical TSS. This could be done by having the initializer
recognize a special Logon command such as "gtss". In this
manner the initial_command 1in CMF would be "gtss" and the
user who did "logout -hd" would enter "gtss" instead of
"login". This "gtss" <command would only be recognized by
the initializer and would cause a gtss process to be created

DRAFT: MAY BE CHANGED A-2 09/20/778 GTSS MTB 393

DRAFT:

which would perform the 6C0S TSS Llogon sequence. A set of
lines could be assigned to the GTSS process so that a user
who dialed one of these special numbers was loaged directly
on to GTSS. From the user's point of view it would look as
if he Logged on to GCOS TSS.

A feature that would be wuseful in GTSS would be the ability
to return to Multics, This could be done with a command

such as "Multics"” which would be synonymous with "logout
_hd"-

MAY BE CHANGED A-3 09/20/78 GTSS MTB 393

