Myltics Technical Hultaetin

MTR=426
Tot Distribution
From: “arshall Presser
Date: 08/19/79

Subject: A Multics “acro Processor

INTROGDUCTIUN

The oral history of Myltics includes some talk that there ought
to be 8 macro processor as part of the standard product. While
this facility alreacy exists within a few installed products,
e.9. editors, alm, rynoff, etc.r as well asS One personal
stand=alone general purpose macro processor (hereafter callec
Falksen’s macro, described 1in both >udd>m>jaf>progdmacro,info,
sys M and MIG 34% by J Falksen) , there is no Consensus as to

what & standard macro processing facility should be. This
document is a first attemnt to!

(1) propose that a variant of Falksen’s macro be imbedded in the

PL/I compiler to satisfy the ADP development need descPibed
below,

(2) inform the Multics community of the more important issues,

{3) describe some existant macro processors,

BRIEF RISTORY

Macro processing seems to have arisen as a feature of asserblers
when rpprogrammers desired &8 similar piece of code, often
parameterized, to be executed freauently but without the overhead
of a subroutine call or the tedium of reproducing the code on
many punched cards, Soon clever people discovered that all sorts
of wonderful features could be incorporated {nte macro assembly
larguages, ineluding conditional macro time text replacement,
fteration, recursion, local macre time varfabless etc, Why limit
these delights to assemoler programmers? IBM actually built them
into its PL/I compilers and the Multics PL/I %imclude facility is
a simple, but useful macro processing tcol, These days, no editor
with pretensiors {8 without something it calls macro processing
ability, Similerly, many free standing macro processors exist,

Multics rproject internal working documentation, Not to be
reproduced or distributed outside the Multics projact,

Page 1,

MTRe 426 T Multics Technical Bulletin

e

some that seem to be language=cependent, and others that have the
ability to generally preprocess text before it is to be subject
to anothepr transSlator,

WH SANTS A PHREPRUCES3UR ant. wHY?

There seems to'te a wide variety of positions on the need for a
macro proceasor, Some feeling exists that macro processing in a
high=leyel Jlanguage 8 {n itself & "bad thing," and that its
existence woulr cause an oxplosjon of pseudo proaramming
larauages and. invasion of juiosyncratic phrases {nto PL/I code,
diminisning understandibility and maintainmability. Certainly,
there was a btarm on the introouction of macro facilities in alm
for 2 lona while, although for a different reason,

fithere merely wish for the availibility of named constants, but
rot in the serse of the rresent PL/1 varsion of constants,
This neeo could he met by pre~expansion of the source seament
through an edgitor, replacita all the names ky their constant
values., It might pe oreferanhle to alter the lanauage
specificatior tc reet tnis rathepr limiteg need,

There may be a commercial need to produce a macro processor to
satisfy rresent or potential customer demand, In this caser
suggestions are made to rebrorduyce the facilities §in the IBM
preprccegsor, Amohg the opponents of this 18 Dave Wards, who
impiemented 8 GCUS versjorn and suggests that the IB¥ product is
both inelegart anf a bit messy to implement, tintess commerical

considerations are rather pressing, mere compatibility is not
territly attractive,

There is & commonly voiced desire to be ahle to mafntain a single
source segment which could be conditionally compiled for
development systems like APP, DPS/E, etc, or for the standard
proniict, Ex8ctly which features are renuired i3 Pot clear, but a
mini-al set of useful features need contain no more than?

(1) single~level, rather than nestec, macro definition ability,

(2) less sophisticated jteration and parameter passina mechanisms
than founa in alm, Falksen’s n7acro, MIDAS, etc,

() concditional comrilation ocepending on the existence of defined
macros or their values as character Strinas,

(d4) aragument contreol from the command level,

The macro processinag tacility to meet these needs can
met with some revisions to Falksern”s macro, Indeed, a subset of
ite facilities, with a few extensions, that I have alreadY built
in ang uUgeH, seemg to be syfficient for these needss 1In

easily be

Fame C.

Multics Technical PBulietin MTB=426

particular this incluces macro

Jefinition:, ifethen=else
structuyres, pesitional

parameters referenced pY nuUmber, macro

libraries, tests for command line ¢ raousents, and a few other
features,

IF wF aART A USEFUL, EXTENDABLE PRUDUCY IN THE NEAR FUTURE, THIS
SEEMS THE BEST wWAY Tid Gi,

IT8SUES ARISI&G IN ®MACKU PROCESSING

1, Should the macre wprocessor bhe

free=standing or integrated
into, sav, the PFL/I compiler?

As various macro processing facilities aleady exist elsewhere,
for the in=nouse revelopment need mentiened above, PL/] source
segments seem tn bhe the obvious candidate for "macro=ization,"
Furthermnre, as evervone remands the corsiStency of
the intearation of macro facilities
infinitely preferahle to an independent pre=compilation expansion
phase, althouagh FL/] formatting proorams which alter line Numbers
exist in this manner, ~acro defirition anc: eXxpansion can occur
{n the lexing phase of the compiler, just as %include expansion
now occurs, The macro processor skould have a8 set of subroutine
interfaces, somewhat lika those of Falksen’s macPo, for these

1ine numbers,
inte the PL/1 compiler seams

cuPrPnOSes, In this way ninimal reworking of the compiler will be
reaquireo and the facilities can be made available for ather
translators, 1t

might 8lso be usefuyl to consider what, if any,
alterations could be gone to indenting nrecorams to recognize
macro expressions,

2. Snould it e line=naseda, token=based, or character=pased?

thile most asserkly language macroe processing is based on lines
or statements ahd muech aditing macre activity {8 based on
Character strinagsy it s redsonahle to suggest that high=leyel
language macro processing be based on tokens, in Pparticular
"jdentifier=like" toxens, (Should anveone really uSe a macro
processor te redefine, say + to be =~?) Furtrermore, will not the
exransion ot eitnepr chapacter Strinas imoedded in jdentifiers or
arfithmetic expressions create all kinads of Nasty confusion? This
tokenizira approach is also compatible with the present use of
*incluce on the FL/1 compiler, Strona objections to this ides
should make themselves felt soor rathepr than later, There i an
aovantace to line=based (or statement=rasec) macros in that the
Tistirgs can ne mace easier to interpret, 1+ programmers place
more than one comnlicatea macro on a8 line, the relationship
hretween line numbers in the unexPande.d and expanded sources
becomes problevratic, The use of indent and formeat_pll could make

for oreater readabilityv, See section S helow for further
discussion,

Fage 3,

" f

MTR=42H Myltics Technical Pulletin

Ce

%2, Should the triccerinag of macro expansion or definition reaquijre
a special macro character? .

Although §t may seer a bit cumhersome to include a %
the macre croceasor, certain ovenefits
processar can he made more efficient

used, as {t woilg not reauire a
determine {f rmacre expansion were repeded, Furthermore, it
eliminates Scome ambiguity and certainly mMakes the intention of
the statement mdre clear, The trioger character §{s therefore

useful in delineatirg non=standard PL/] constructs, Un *he pther
hano, consider the statement?

tn invoke
accrue, The macro
{f the triager chapacCter ig

laookup of every tokenr to

fred = control_function(norman,harold);

Programmers may wish to be ahle to write this statement and have
it conditionally mrocessedr so that in some circymstances, the
right=nance=side is8 to be viewad as a function call or array
reference, while in others, as a macro to bhe expanded, The
reauirerment of a2 trigoer character would provide some difficulty,
I1f ~reoararmers mostly igree that the invocation of macros ought
not to reruire a specia: trigaer symhols it then remains a
probier «f gistirouishirg between the macro call and the literal
character gtrina of the same name, This can be done bv (1)
recuiprirg all macros t0 be triagered by the special svymbtiol, (2)
plac 'ng sceme literal bhrackets around tokens that must not be
expanded, or (3) a macro pseudo=op which temporapily suspends
exransion of certain macros, The last alternative would look the
messiest, ang the secong would nrobably be the most converient {f
sensi1hle ugers tried to avoid usimg ambiguous names,

4, Sthould there he immeniate expansion of macre definitions . or
Shou'd these he done at time of invocation? :

The problerm witk f{rmediate expansifon {8 that the order of
definitior hecomes critical, For example, the following Secuence
(where the define pseudo~op causes 1Jts firat arqument to be
rerlicea by its second when encountered and undefine removes its
arqQument from the list of expanoible Macros):

defire(MEF,Marshall _Fresser)
define(lvan_the Terrible,MEP)
undetine(®EP)

will expard Jvan_the_lerrible to “tP if macre definitions are
expandes at call time and to M“arshall_Presser if expansion is at
define time. Sycgestion8 welcomed as to which mathoo is
preferable, as ¢this is not merely a8 qu®stiOn of implementation?
but rather a fundamental desian choice, The use of a trigger
character greatly Simnlifies readino of the source segment, makes
the proaramners intentfions clear, resolves auesti®ns of arderp
dependarce in macro definition, and mav Prevent amhiguities with

Page 4,

Multics Tecnnical Bulietin MTB=iy26

non=macro coenstructs

in the source segment, Closely allied with
this pronlem

is that of the rescanning of mACro exPangions to se~

if thev contain more macros to be exPanded, If this {8 done then
the sequence

define(fred,ceorge)
define(georae, fred)

will Yead to chaos, 1f rescannina s efither forbidden or
reauired to be macge explicit, then chances of infinite recursion
are not likely, Alternativelv, recursinn and mutual recursion
are very useful technigques and should be permitted, although theyv
may prove more exrensive than iteration when both are possible.

5., How shouln macro expansions apvear in compiler listings?

In the case of namea constants , tor example, it may be useful tn
be able to seée hoth thae name and tha numerical value to which ¢t
is ogefineo at debug=time, Simjlarly the treatment of lire
nymbers in compiler error listings can lead to confusion. This
is a non=trivial auestion, Most macro assemblers provide the
default that exvansions do not appear in the 1listings, This
strateqy is not useful for debuocing purposes in aeneral, when
using the PDP=11 BI(YAC packsaesr a set of structufed programming

macros, it 1s rot useful to see the exransion of these macros,
but of user=cdefined macros., Shall we have an option that
indicates that the 1listing i{s not to include macros found in
system racro libraries? shat afe the implications of ¢this

strateagy for the use of probe? Consider the case of th2
declaration macra, which can be viewed in Same circumstances as 2
generalization of tre "|ike" attribute, ™Most ysers will not want
to see these expanaed, rence the need for a listing off/on
togale seems yseful, Altermatively, €ach macro may have imbedded
within ijts gefinition a pseudo=or indicating whether it is to te
expanded, or possihly a contreol argument c¢an he uSed, The real
issue, hovwever, {18 the selective 1isting ©f the macro expansior.

6, what Multics stancards snould be placed on the use of macro
facilities?

7. Should arqumuents

to macros he by position, kevword, both or
neither? ' »

vhat actiens shoula occur it the number of arqguments in the cail
is not the same as tne number in the definition? MINAS, for
example, rrovices a wealth of paramater passing mechanisnrs, as
well as distirouishing between unspecified arauments and
explicitly nullespecified arguments, while this may be a very
useful funetion, 4§t s implemented by a large Set nf specia)
syrbols to indicate the nature of the parameters heinc passeo,
Those not auite familiar with the system wil)l find the unexpanded
source very difficult to understand, Even with experiencer the

FPace 5,

MTB=-U26 " Multics Technical Hulletin

MIDAS aporoach mavy very well be overkill,
migcht wigh to tomment on this, keyword parameters make for much
more readable cede, althouah they change the format of a mecro
call teo sSomething different than that ot a standard
furctien/subroutine call, The similarity of appearance of macro
calis to fynction calls may well prove to te a very handy
feature, anile reterence to parameters by name rather than Dy
position numher,r e.a0, &1, %2s etc,, produces more raadable
manv r.acroprocessors require the latter kind of
easa of jmplementation,

L

Experienced users

code,
reference for

&, what kind of macro time variables, {f any, are required?

Falxsen’s macro provicdes scalars, arrays,

listg, and aueues, but
onlv of character strinas, These may be evalyated aNnd
manipuylatea arithretically, Given this ability, i8 the creation
of an arithmetic data type necessaryr, or mapely ygefyl?

Falcsen’s macrao also provides local,
variables as well as suych macro
arg ments passecd to the calla. what,
acvantaageous?

internal, and eXxternal
constructg as the number of
if any, other facilities are

9, hat {8 a reasonabhle set of

pseudomoperations ano built=in
fur-tiansg?

Certain standards inclucve the ability to undefine macross, to
alter the special racro syrhol, toO0 conditiconally compile
deprending on whether 3 macro has pneern defined nr if the value of
two strings are ecuals, to divert the i{nput stream, to convert
character strincs to numbers and perform arithemtic an them or
use them in comparisons, etec, Closely related are the S8tring
nartlino buyilt=ir fyuctions, such as index, sunhstr, verify, etc.

khile it would he cesirable to bpve as muych power as possible,
what remains & useful workimra set? '

10, snat flow centrnl mechanisms are most desired?

Ifethen=else and cio=while Jloops seem to be common and useful
tools, as well as the ability to set labels in macro definitionsg,
Thie last feature is missing in Falksen®s macPfo and might be
faurd to be usefyl. The macro time label feature §s distinct
fron the generation of labels. The alr ability to aenerate
upicue labels and refer to them within a macro may be a more

usetful feature of an assembly lancuage macCro Processor tharn 8
higrk=level language macrn processor,

11, vhat form nt error pecovery seem8 most desirabhle?

Simply having the macro processor halt upon the discovery of a
simrle syntax error seers a bit severe, A classification of

error by severity level would appear to ne more reasonaple and
compatihle with PL/]l svntax nrrors, However, macro processing

Page 6,

Multics Technical dulletin MTB=4g 6

involves bhoth “define=time" and "invoke=time" fmatures, soc that
an {11eqgal macro cdefinition need not suspeNa processing, but a
macro call to an unknown Macrp or use of an undefined veriable
can result in either onty minop errors or cemplete
non=comprehension, depending upon circumgtances, b oagood
approach, it seems to mes is that of the PL/I compiler which will
continue nrocessing &8s long as possible, This now OccuUrs with
faulty %include®s, although it frecuently leads to an avalancha
of errors and associatea messages,

12, what are the perforrance corsiderations?

Clearly the macro wnrocessor shoula not drastically idncrease
compile time, especially for those who make no use nf the
facilities. If the macro ¢trigaer character 1is used, as for
%*incluyde, %skip, ana *pager the inclus{on of macro facilities
can be dore so that anly those recuiring them meed pay the price,.
Those who make moserate use of these facflities waUld not want to
see an increase in compiling time of more than, say 1¢ to 15
percent, {(In the other hande those whO wWish to use the macro
facility to substantially extena PL/I in private directions mMijght
he encouragen to use & stand=alone macro nre=pPFROCeSSOr,

SOME MACK PROCESSDORS WORTH EXAMIMNING

what follcocwus is a brief summapy ot the

facilities of commonly
used macro

Processors with a comment on tneir appropriateness, as
1 see it, Ffor thkose who wish further jnformation, a briet tabla

appears in the arpendix and a refererce, here possible, is given
to more comprehergive documentation, '

1, alm (MPM=SRG)

Alm allows nesten magcro definition and inveocation of macros
within definiticrs, The {imbedded macro need not be defirmed 8t
the tima of cuter rmacro definition, but must be at the time of
the invocation of the outer macro, TNiS is characteristic of
many macro nrrocessors, iPefin{itions sare triggered by the keyword
"macro" bhut invocation requires ro sprecjal echaracter, There are
facilities for uniaue label generation ang referencer iteration
by list, selectior asroup control, a funection yielding the numper
nf arguments nasses tp the macro, and pseudo=ops for conditional
assembly ccepenaing on whethep 8n aPguUment is an integars {f two
arquments are eaual, etg, A also allows conditioral assembly
on arguments passed at comrand level, There are no macre time
variables. while there seem to be a wealth of Qo00d jdeas in alm
macro facilities, thejr flavour i5 nnt that of a high=level
lanauage and the alm macro Structure may not be appropriate for
the in=housSe uUSe mentioned abovee

Pace 7.

MTB=UZ6 Myultics Technical Bulietin

P

2, Falksen’s macro (>uda>m>jaf>prog>macro,info,sys M opr MTB 345):

hested macre ~.cdefinitinn has just been added, The inclusion of
some other features, such as the ability to aquery command=line
arguments and tests to determine the existence of the definftion
of macros with civen names would seem tp make this an sttractive
choice, First irndications are that the inteapration into the
lexina phase af the PL/] compilep should not prnve too difjcult.,
Extensive use is mace of the triguer symhol and the whitemspace
conventions are neot L/I=1ike and may reaquire some restructuring,
but it is easVv to use , allows nested invocations, {s recursive,
provioes useful centrol structures, provides easy readability,
ano has puilt=in debuaging features, It does, hnwever, prohibit
the use of certain reserved woras as macro variables,

2, I8V PL/I preprocessor (GCR2G=0009=4 or SC20=1609~1):

Thi~r preorocessor requires a separate pass before rompilation in
whith prenrocessor statements are converted before the compiler,
per se, attacks the program, These can be independant phases,
anc I am rot certain of tre affects on Jlistingse. There exist
cha-~acter ard fixed oecimal variables which recquire explicit
declaration, as well as preprocessor functions, which

may have
their owr local varfables, Flow of control is achieyed ny %XDN
aroups anc Alk .. .BTHEN, %t LSF as well as %GNTU’s, This ivplies
prenprocessor labels., Arauments are by posftion as well as
keyword, Such preprocessor functions look very much like PpPL/I
function procedures, Dutput of this product s not pretty.,

There are no explict provisions mage for

command line apgument
handiina,

nested fnvocations are permitted, but I am not certain
about negted definitions, byilt=in preprocessor functions
include substr, lenath, index, a unique decimal numner generator,
and a test indicating if parameters have exrlicitly been set on

{nvocation, A peasonable restriction requires that a orocedyre
definition can not span in¢lyced files,

4, UNIX M3, d,and M6 (UNIX Programmers ~anual, bell Labs):

There are provisions to oefine anad uyndefine macrosy but the
rescarning of definitions at define time often yields unintended
results, Useful features include the diversion of input streems,
include files, change of auote symiolsr etce Increment, evaluate,
length, -substr, anad index are the primary byilt=ins, Nested
definition 1is impossinole but nested invocation is permitted as
well as invocation imhedded in aefinition, No special trigger
symbol {8 used for dinvocation, however definition reauires @
triager (in some versions}, There is both a free standing form
as well as facilijties built into the C coMPiler, Curiouslyrs the
corpiler reauires that the first character to ne the trigger
character it the macro processor s to be turned on. The macro
processor is easy to use for simple tasks and comMand line
aragument handling can easily be implemented, but the lack of a

Pape 8,

Multics Technical Bulletin MT Bmly26

trigger symbhol is often found contusing and as the C compiler
does nnt rrocduce a listing, the use of 8 sSymholic debucger
virtually forces a stand=alone pass to he made, The automsatic
rescannina of all wmacro output for further macre invocation or
definition may create prroblems for the sharing of mac Mo

libraries, There {8 little in the way of ¢flow control and
sophisticates use of the system i8 diftficult,

5, macro facilites in “ultics editors (emacs, teco, aqedx etc,)?

These need no commert nere,

6, Itsm R60G/370 Yacro tssemblers ((L28=6514 and GC33=4010):

Versions upte anrd idincluding level F provided keyword arguments
default arquments, list arouments, anc Jlahel data typas, byt not
rested macro definition. tinlike Ssome macro porocessors, user
defineo names for parameters are specified, so that the tedious

use of Ri, k2, otce for positional paramatrs is avoided, There

are both global and l1pcal variables of three types: binary,
Character, an0o arit metic, Pseugo=ops for type of argument,
length of argyment, nu.mbepr of arguments in a 1ist, etc, are
available, There are recursive macro calls, However, macro

definitions must he either in & macro lihrary or at the beginning
of the source ard tne orientation is very much Jline=hased,
Control flow {8 mostiv achieves by {$f’s and goto’s, Later
versions mav have more powerful features with which I am not
familjar, =»hile some nf the features, such as kPywOrld parameters
with defaults, are auite useful, the lack of structured data

typres and flow control suagest acajnst tnis aeneral style of
macro processor,

7. MI0AS:

This s a powerful PLP=1(assembler developed at the MIT AJ Lab,
Unlike other macro vrocessors, r8rameter passing s very well
specifiecd; there are &6 kinus of argument syntax 8s well as bind
classes to deternine what happens to parameters evaluating to the
ruyll string, Nested definmition and invocatian are available as
well as various loor controls, Conditional assembly predicated
on the value ©f arquments or definition of macros i{s also
supported, There are np macre time varfables, #while a number oOf
ww fegtures are present, {t is unclear that manyY of then are

realiv necessary, 1 have a copy of the documentation for those
interestec.

8, The ULIVAL Pronosal:

There i3 a document circulating which proposes a rather extensive
macro |language ¢f syntax similar to that of PL/I, It appears to
be enormously poverfui and may hear eXxamination if such power s
considered aesirable, The pronosal contains a8 good introduction

Facge 9,

MTR=U26 #ultics Technical Bulletin

tco macro frecessing as wel)l as a reference quide to the proposed
macro lar guage¢ - As described, it would exist in a preprocessor
version a o an implemantation woulo not be trivial, An {n=house
version 1+ as once c¢o2nsicered by G« Chang, but I car not find
anythine but some oocumentation OJdeSclfibing it, I am the

tempcrary auardian of a cocy of the Unlval proprosdl and thase
interested can borrow jt,

L4
L

WHAT NEXT?

There can be no clear cnoice of which mecro processing activities
to pursue unless there is a well=defined goal and that reauires
an assegsment as to whe will bhe the audiemce for thigs macro
processine activity, Hence, some response 18 reayired hefore
any serious racro processing desian can pegir,

Flease send corments to:?
“Fresser, iultics,
or

arshall } resser

Honeywel]l Intormation Systems
575 Tech “qguare

Cambridage, Masgs,. 02139

Ur ecall:

(617) u92=93290
iV 2al=9320

In aadition to comments sent through mail
for a chat soretime or recomrend

facilities thouaht to ne useful, Sometime in the next few weeks

those {nteresteda can gather for a deSign nreview (gic) whepe a
consaensus can be foraed,

or messages8,; stoo in
other macro nroCegsors or

Fage 10,

myultics Tecnnical Hylletin MTR=U426

APPENDILY
alm

1., variables: ftone,

2, Parameters: Fogitional and numpered,
3. PFseudo=ops ard bhujlt=ins:
and reference, araument count,
number of elements in an jteration set, etc.

4y Trigaering: Lefinitions by keyword "macre" amg terminated by
"gend.," lInvocations and opseudo=ops require no special trigger,
Control functiors begin witn X,

5, Flow contrel: Iteration by lists,
argurent which is itself & list,
selection 0f list elements,
comparison of tweo strings,

but may consist of lists,
Unique character string generation

length 0f an arauments (in chars),

either of the arguments, an
by a conmstructeg list, or by
Conditiornal axecutiomn based upon the

if a strinn represents an integer, or
if a strirg has heen prassed as a control arcument,

6, Commanag l1ine interface: Strings can be set as command
arguments and conditionmal processing cah accur on these strings,
7. Uebuacing/listina:r Ne genugaing tools cver se, Ffxransions

placed in listing without 1ine numbers, A gtackable on/off
toogle for listinc.

8, Fescanning: Mone,

9, Westinc: Mestecd definition, invocation and imbedrded

invocation
within definition,

Falksen’s nmacro

1, Varjaries: cnaracter strirg variables of three scopes, like
external static, internal gtatic, &and automatic, Scalars,
arrays, l1ifo, fifor and lists, i,e, sets,

2. Parameters: Fositional and numpered. Can ke lijsts,
hrandling must be expglicitly hendled by programmer,

2, Psuedo ops and built=ins: Protected strings, parameter count,

active fungctions, substr, lenaths quotinag, uUnquoting, white srace
control, ano likrary reference,

4, Tdriagerinat 411 mgero constructs
reservec woOrdsS as well,

5, Flow control: 1lft=then=-else~fi and
statement for rremature exit, MNo labels or goto’s,

6, Lommand line interface: Abijlity to send arcouments to a macro
throuagh the cormand line, A1so a Subproutine interface in the
uysual ~ultics fashkion,
7. Debtuggina/listina: Internal debugaing aid, theough outnut
oit obscure, AT mACPO
1isting per se.

K, Kescanrina: ot unless explicitly rencuested by a pseudo=oD,

9, HNestinn: Kecently installed multi=level nested definition,
Invocaticns permitted within definitions and invocCations,

but list

preceederd by &, Some

do=while™od, Returln

is a
rhrases replaceed by expansionss no

IeM PL/T rreprocessor

Page 11,

MTRe 126 Multics Technical Bulletin

]

i, uariah1es:“?bloha1 and local of type fixed decimal and
charivarying), =
2. ‘'aramnterst +Fositioral anc scecified by nere, Of type fixed

deci al or c¢char,

3, Pseudomops dang byili=insg
variables, substr, counterp
Faraneter has been set),

4, Triagering:i® tise of % as a triager for virtually all
precrocessSor statementss but varjable and pprocedure cells do not
reauire a srecial character,

5. Flow control: U groups and GDTOs (preprocessor labels
with %), IF=THEM<ELSE control as well,

6, Command line jnterface; Hone(?)

7. enruyaaing/listing: Ko expliscit debugging aids, No listing
controls on the preprnocessor, as the preprocessor phase produces
source fopr compiler prhase, Freprocessor can be used without
compiler,

b, Kescanning: A1 output of
explicitly preventeda
user literally,

9, hesting: No nestea definition, but
wittir invocatinns and cetinmitions,

Deactivation and activation of
function, parmset(to indicate if a

hegin

preproCessor regcanned

unless
s*deactivate used to allo.-

a variable to be
invocations permitted
UrI

1, Variables: None,
2, Parameterss: Fositional and numbered,

3, Pseydo=-ons and bujlt=ins: Change of ouote Symbol, undefine (a
macro), conditional replacement predicated upon equality of
strinags or existence of macro with a prescribed name, and
diversion of input stream, JIncrement: index,suhster, and lenath,
4, Triggerina: Varies with version, bhut wususlly no triager
character for invoGation, but pseudn=ops may pequire one, Dollar
sigr used as the parameter numbepr trigger,

5, Flow control! Fprimitive, See 3, above,

6, Command 1ine fnterface: Hothing explicit,

but congitional
comt-ilations nrocucesd by altering the search rules (for {nclude
filasg),

7. Debugaing/listinag: fo debugaing afds, In stand alone form,
everything expanded anrad listed (by printing the output fite), C

compiler rrovides no Jisting, so often error message become
obscure,

B, vescannings Everything rescanned unless explicitly
NDefinitions rescanned at cetine time,

S, Mesting: Yo nested definition, but
definitions ana nestec jnyocation permijtted,

prevented,
invocations with
IamM 360/37C Agsembler

1, Yariables: Both clobal and local

arithmetic, hirary, and craracter.
2, Parameters: Hoth keyworad and ro8YtiOnal, in

in scope, ot three typesa,

any oprdenre

Page 12.

-

Multics lechnical Bulletin MTR=426

defaults for keyworo carameters, AT

parameters name-,
Apguments can be 1ists8 and

subscript rotation to access list
elements, Use of &sgyslist DSeudo=op to &ccess entire Set of
positional arouments as a list,

3, Pseudo=ops and built=ins: Generation of consecutive 4 digjt

numbers,s sSubstr, argd functions to determine data tyPe, length (in
bytes) , ltenath (ir characters) Or aPguments and variables, etrc,
a, Triagering: Cefinitions trigoered by keywobd "MACRIIM
Invocation Peauires ro triggers but soOme PSeUsowops Go.

5, Flow contrel: ostly by means of if and gotor but a KACTR
pseudo=op allows FORTHAN like cdo loars (increment down to zero
from an initally user set number),

6, Command line interface: A read only pseudl vapr &SYSPARM
results in a strino sget in a JCL statement, Can be used in
conditional statements,
7, Debhuoging/listina?! Debugging by explicit code onlv. Listing

control tec allow allow/prevent listing of defintions as well as
of expoansions.

&, Rescanning: “aone,

9, Nestina: Vo nestea definitjon, Invocations allowed within
definitions, nut NOt withinm fAVOCALIQONS »

MIDAS

1. Variatles: "one, but wuse can be made of
variahles,

2. Parameters: «eyvord anc rpositional, svecifijeg bhy nare,
Defaults for Levworrs, Special handling fopr unspecified and
nulispecifiec parameters available, wealth of arqument types,
"wholeline”, "nalances"i", "evaluated", etc,
3, Pseudo=ops and built=inst

conditioral assenbly nseudo=ops,
4, Trigecerinct Definition triggerec by keyword, Invacation
require only name, Pseudo=ops often beain with a ",",

5. Flow contrnl: rastly by means of REPEAT and IKP loops,
Apility to hreaw frewnm a loop as well as a goto,
6, Command 1ine interface: TTYMAC pseudo=op defines a
macro which reaas arquments froam the teletype,

7. DNerygeoirg/listina: Na explijeit debugoing aijds, Cocument
unclear or listino.

8, Rescanning?! Mot done,
9, Nestina:l Full nesting facilities,

asgsembly time

Lots of assembler pSeudorons and

nameless

UNIVAC

1, Variables: (if type decimal fixeg and char (varying). Arravs
of both tvpes. #ssociatively acdressed arrays.

2. Parameters: Ppsitional, but refererce In macro definitions s

not tike that ¢f procecures, A macro picture (remnlate) s
constructed, e,0,

€* 35Uk EXFRESSIUN *FRUM® REFERENCE 37>

will match strirg Yike SUB FREN 4 SAM wx2 FRUYM HAROLD (23);, In

Page 13,

MTB=U26 -
]

Multics Technical Rulletin
further macro corstructs in the macro body FRED + SAM xx2 will be
substitied for EXPRESSINN ara HaRULD (23) for REFERENCE,

3, Pseu o=ops anc buflt=ins: Language features used §n template
matchine irncludine ¢ CHAFACTER, IDENTIFIER, EXPRESSIUN, etc,
Also inceXx, lenath, substrrs etcC. Meta function to alter and
extend the macro lanauacge,

4, Trigaering:s Macre oefinition head the text to be expanded,
They trigoer By keywora, No trigaer chapacter, Macro of two
kinds: triquer and syntax, Forrer afe triggered by match of of a
macro picture in the expandeble text, Latter are only recoanized
within other macrosy Never fror the text. Limitation of tpigger
macros {s that they must becin with a ljteral,

5, Flow control? within tricger macros there are DO loops (var =
exp to exp by exr), goto®s and jf=then=elae as well as procedure
calls, Procecures kut not macros, have PL/I=like syntax,

6, Command line interface: ione described,

7. Debugaing/listing: Check ard warn statementg
prefixes, Former useo dynamicallyY teo print debugging infe on
nossible chanoe of value of variable, execution of a statement,
macro or proCedure, Latter used whenever macrPfo {8 invoked,
cartially, nut incomplately maetched, Former meant only at debug
time, latter as errcr messaqges for imoroper ysaoe ang are meant
to be permanent, As this is meant as a pPreprocessor, no explict
listing control, ratrer printina of output file,

8, Rescanningt! Gty cdefaults, during the processinag of a trigger
macro there {s no rescannina, Hy default, after the processing
cf the macro, the returned string i1s rescafned, Hoth defaults
car be overridden by the RETRY and PROTECT optiens respectively,
9. Nesting: Arparently not in definitions, WNested invocation

possible, but invocation of trigger macros not permitted in the
definition of other trigger macros,

and statement

Fage 14,

